Temenos T24 Media Application Program Interfaces.doc

APPLICATION PROGRAM INTERFACES

Introduction

This chapter describes the available options for developers who wish to enhance the
operation of the current T24 system, where there are insufficient options provided by the
Standard T24 utilities. Within specific applications the system allows jBase subroutines (or
jBase commands in some cases) to be defined, which will then be invoked when running
the applications. This provides a powerful tool to allow customisation of T24 to meet
regional or customer specific requirements.

All programs written should follow the programming standards, documented in the
Programming Standards section of this manual.

This chapter has been divided into the following areas of the system:

* Application Customisation

» System Management Customisation
* Reporting — Enquiry Customisation

* Delivery System

* Interface — Local Clearing

* Local Statutory Reporting

» Takeover — Installation Customisation
e Limits

» Company Customisation

Application Customisation

Introduction

This section is concerned with the options available in customising the operation and
content of T24 applications.

VERSION

The VERSION application allows user defined subroutines to be specified in the following
fields:

AUT .NEW.CONTENT
VALIDATION.RTN
INPUT.ROUTINE
AUTH.ROUTINE

AUT.NEW.CONTENT

This field would normally be used to automatically enter a value into a field specified in the
associated AUTOM.FIELD.NO, when a record is read using the I,C,H or V functions. The
automatic contents are only used if the existing content of the field matches that defined in
the associated AUT.OLD.CONTENT.

Temenos T24 Media Application Program Interfaces.doc

This field may also contain a sub-routine used to perform conditional defaulting, which
cannot be defined in Version, or defaulting from related files.

Format: @subroutine name

Subroutine name must be defined in PGM.FILE as a type S
application. The field APPL.FOR.SUBR contains the application(s)
allowed to use the subroutine.

Invoked: From RECORD.READ with FUNCTIONS I,C,H,V
Arguments None

Details: Any subroutine defined in this field will be called from RECORD.READ.

At this point the record has been read and is contained in R.NEW. This
subroutine should modify the contents of R.NEW as required.

Note that this routine will always be invoked where defined and the contents defined in the
field AUT.OLD.CONTENT are not checked. Any conditional defaulting should be contained in
the subroutine coding.

Example:

The following example demonstrates a routine, which will automatically default the
CUSTOMER SHORT .NAME into the field SHORT .NAME on the file DE.ADDRESS.

PGM.FILE definition:

E Program File Input !EIE
|CVEI.DE.ADDREBB.E %

1 Type =] vI =

2 Gh Screen Title |

3 Additional Info |

41 Batch Job .

5 Product Ee

6 Sub Product 4

71 Description will defaultthe short name from L

7 2 Description Jthe custarmer recard into field 6

7 3 Description Ju:ufthe DEADDRESS record when used

74 Description Jin the ALTOM. HNEW . CORTEMT field an

78 Description Ja VErsion recard.

7 6 Description JNOTE: This routine should anly he

77 Description Jused with DEADDRESS.

81 Appl For Subr aDE ADDRESS | DEADDRERS f
3

al | N

Figure 1 - PGM.FILE input

Temenos T24 Media Application Program Interfaces.doc

3.1 AUTOMFIELD.MNO ml T O S OLNTRY-1
321 AT OLD.COMTEMT
331 AUT.MEW.CONTENT VB .DEADDRESS.G

b

Figure 2 - Adding routine to version

Program

000l: * Yersion 2 £8/02/942 GLOEUS Relea=e Ho. 14.1.0 21703794

aongE: SUERITT INE CUE.IE.ADIRESS .6

oo02:

oood: * Thi=z routine default= the walue in SHIET N3E column in DE. ADDRES3
ooos: * table with the customer's =zhort name. The routine iz defined in the UERIION
ooag: * record DE.ADDERESS,

aooT:

000&: $INBERT I_COMRION

0009: ¥INSEFRT I_EQJTATE

001l0: ¥INSEFRT I_F.CUSTOMER

00ll: ¥IWSEERT I_F.DE.ZDREEE

001E:

aolz: CUETMEER.ID = FIELD(ID.MEW, "_.". 2]

a0l4g: CUSTMEER.ID = FIELD(CJSTOMEER.ID, "-", 2]

a0l5: CALL DER("CUSTOMER": IM:EE.CUS. BHORT .WAME, CUSTOMEE.ID, SHORT.NAME)
O0L1&: E_NEW(DE . 30D _ERANCHWAME .TITLE) = 3HIRT . NAIE

aolv:

a0ls: EETUEN

aols:

aozo:

a0zl: ERD

Figure 3 - Details of subroutine

VALIDATION.RTN

This field, together with VALIDATION.FLD, allows definitions of subroutines to be executed
when validating the contents of fields within an application. A routine defined here would
normally be used to perform specific validation or to default the contents of fields
according to local requirements.

Format: subroutine name

Subroutine name must be defined with an associated VALIDATION.FLD.
This may contain a field name, together with optional multi-value
number and sub-value number.

Invoked: At Field Input validation time, immediately after the call to IN2xx as
defined in the T parameters for the application, and before any
validation in the section CHECK.FIELDS is executed. Also at Cross-
Validation time, before the CROSS.VALIDATION section of the
application is executed. The subroutine will be invoked from the
program VERSION.VALIDATION.

Arguments None
Details:

Routines defined here have the standard system variables available for checking. The
following variables should be used when performing checks/defaults:

Temenos T24 Media Application Program Interfaces.doc

COMI

Contains the contents of specified VALIDATION.FLD. This variable should be used when
defaulting/checking values for the specified VALIDATION.FLD, not R.NEW(AF), as this does
not contain the value at this point.

COMI.ENRI

This should contain the enrichment for the contents of COMI.

DISPLAY
Contains the formatted version of COMI for display purposes.

ETEXT

Contains any error message generated from the subroutine. This field should be populated
when an error is found.

MESSAGE

This variable can be used to determine whether the system is performing field level checks
or cross validation. At cross-validation time, it will contain the value “VAL”; on-line it will be
null.

Example:

The following example shows an example of defaulting the CUSTOMER name based on
the following rules:

If local reference field CUST.STATUS (value #3 in the LOCAL.REF field) = “A”
Mandatory Input

If local reference field CUST.STATUS (value #3 in LOCAL.REF) = “B”
Default BEN.CUSTOMER = “CUSTOMER TYPE B”

If local reference field CUST.STATUS (value #3 in LOCAL.REF) = “C”
BEN.CUSTOMER not allowed

If local reference field CUST.STATUS (value #3 in LOCAL.REF) =~
CUST.STATUS =“C”

At cross validation default, the value “ACCOUNT.NUMBER” in the field BEN.ACCT.NO of
BEN.CUSTOMER is present

On the version the following is specified:

39.1 YALIDATION.FLD L OCALREF-3 CUST.STATUS
40.1 VALIDATION.RTH f/ERSION.DEFAULT

Figure 4 - Version input

Temenos T24 Media Application Program Interfaces.doc

aool: SUERIT INE WEERS ION _DEFAULT

aooz: =+

0002: FINSERT I_COMMON

0004: FINBERT I_EQITATE

0005: FINSERT I_F.FUNDZ.TRANSFER

aoog: *

a007: * Thi=s routine walidate=s the field BFEW.CUSTOMER against a local reference
000&: * item CU3T.STATUS which i= walue 3 of the LOCAL _REF field.

aoog: =+

aolo: IF COMI = "" THEW ; * Default walu= C

o0l1l: coar = "cv ; * Default walue

O0lz: COMI_EMRI = "CUSTOMEER TYFE C" ; * Enzichwent

aolz: END

o0ls: CU3T .3TATUS = COMI ; * Entered Valus On UVERI ION
aols: *

aolE: EEFIN CASE

aoln: CA3E CWBT_3T2TU3 = "an

a0ls: IF R.NEW(FT .EEN.CUSTOMER) = "" THENW ; * Mandatory £ield
anl3: ETEXT = "EEN CUSTOMEE MIANDATORY WITH JALUE '&'"

aozo: END

anzl: CASE CWET.3T2TUs = "B"

QOZE: IF E.NEW(FT .EEN.CUSTOMEER) = "" THENW

aQozz: *

O0E%; *+* Dafault the valuas "CUITWIEER TYFE E"

aozs: =+

Q0ZE: E_HEW(FT .EEN.CUSTOMEER) = "CUOSTOMEE. TYE E"

aoET: END

a0zs: CA3E CWBT_3TaTUs = “C"

anza: IF R.NEW(FT .EEN.CUSTOMEE.) THEN

aoz0: ETEXT = "EEN CUSTOMEER NOT ALLOTWED WITH CWIST 3TaTUs 'C'M
a02l: END

a02z: END CASE

aozi: *

0032d: ** Defanlt walue into EEN_ACCT W0 if FEN.CUSTOMER i= pre=ent

oL *

a025: IF MOT(ETEXT) THEN ; ¥ Don't dafault if arrors
anzn: IF MEZ3AGE = "WAL" THEN ; * Only at Crosswal

a02a: IF E.NEW(FT .EEN.CUSTOMEE.) AND E_NWEW(FT .EEW.ACCT _H0) = "" THEW
anz3: E_HEW(FT .EEN.ACCT.N0) = "ACCOUNT HITMEEER"

ao040; END

a0gl: EMD

angz: END

aog:: *

o0ga: EETUEN

aogs: =+

a0gas: END

Figure 5 - Subroutine details

INPUT.ROUTINE
A subroutine may be executed at the unauthorised stage of transaction processing, as the

final stage before updating unauthorised files. Multiple routines may be defined by
expanding the multi-values.

Routines called at this stage may be used to update local files, or to provide additional
checking or override processing. At this point of the transaction, all standard default and
validation processing will have taken place.

Format: subroutine name
Subroutine name must be defined.

Invoked: From UNAUTH.RECORD.WRITE. This routine is called after
CROSS.VALIDATION and BEFORE.UNAU.WRITE subroutines within
the standard template.

Arguments None

Validation should be processed in the same manner as standard cross-validation calling
STORE.END.ERROR when an error is encountered. The example below shows a local

Temenos T24 Media Application Program Interfaces.doc

subroutine, which checks that the SHORT_NANME in the application SECTOR is fully alpha. If it
is, the routine LOCAL.UPDATE.ROUTINE is invoked.

SUEROUTTINE EXAMPLE . INFUT . ROUT INE
*
7 INSEFT I_COMMON
INSEFT 1_EQUATE
#INZEFT I_F.3ECTOR

*

** Check that the =hort name i= all alpha
*
IF NHOT (R..REW(EE.SEC. SHORT .NAME <1, 1> MATCHES "la0A") THEN
ETEXT = "MUUST EE ZALFHA"
&F = EE.SEC.SHORT .NAME ; &0 = 1
CALL STORE.EWMD.EREOER
END ELZE
*

** Call local routine o log change
*

CALL LOCAL VPDATE .ROUT INE
*

END

Figure 6 - Subroutine details

Override messages should be generated using the standard STORE.OVERRIDE
processing. If “NO”, is replied no further processing should continue.

Updates to files must use the standard F.WRITE, F.MATWRITE and F.DELETE routines
to ensure data base integrity.

NOTE: At this point file updates may have occurred, although not written to disk, since
accounting will have been performed.

AUTH.ROUTINE

A subroutine may be executed at the authorised stage of transaction processing, as the
final stage before updating authorised files. Multiple routines may be defined by expanding
the multi-values.

Routines called at this stage may be used to update local files. No checking or override
processing should be performed at this stage, as the system cannot process error
conditions at this point.
Format: subroutine name

Subroutine name must be defined.

Invoked: From AUTH.RECORD.WRITE. This routine is called after
BEFORE.AUTH.WRITE subroutines within the standard template.

Arguments None

A routine used at this stage will be typically used to provide updates to local files.

OVERRIDE.CLASS.DETAILS

OVERRIDE.CLASS.DETAILS allows a subroutine to be defined to manipulate an override
message so that the conditions defined in this table may be applied to it. For example, an

Temenos T24 Media Application Program Interfaces.doc

overdraft message could be converted into local currency for allocating an override class
depending on the amount.

DATA.DEF

This field is used to define a variable element of the override message, which may be used
as the basis for sub-classification. A routine may be defined to perform required
extraction/conversion to the elements of the override message.

Format: @subroutine name(pary,....parm)

Subroutine name must be defined in PGM.FILE as a type V
application. Where parameters are required, these must be defined in
the PGM.FILE record field ADDITIONAL.INFO as .PAR(XX,XX...XX)
where xx describes the validation rules to be applied to the parameter.
Where no parameters are required the parentheses are still required.

Invoked: From STORE.OVERRIDE
Arguments SCAN.TEXT, OVERRIDE.VALUE, DATA.DEF
= Where:

SCAN.TEXT contains the override message as defined in
OVERRIDE.CLASS e.g. “ACCOUNT and -UNAUTHORISED
OVERDRAFT”"

OVERRIDE.VALUE contains SCAN.TEXT plus the variable values
DATA.DEF contains the parameter definition in the field DATA_.DEF

Details:

Any subroutine defined here must return details in both OVERRIDE.VALUE and
DATA.DEF. The variable elements in the OVERRIDE.VALUE can be converted to a
required value, for example converting foreign amounts to a local currency for checking.

The DATA.DEF value can be used to return a derived value for the specified element.

Example:

The following screenshot example shows a routine used to give a different override class
depending on the amount of overdratft.

Temenos T24 Media Application Program Interfaces.doc

B
ODRAFT

LT, GO COMVILISEY

% Program File Input

wrcoveow =k

Figure 8 — PGM.FILE record for relevant subroutine

Page 8 Release T24R05

Temenos T24 Media

Program LIMIT.CCY.CONV

aooz:
aooz:
Qoo
aoos:
aoos:
aooT:
aoos:
aooa:
aolo:
o0ll:
aolz:
aolz:
O0l1%:;
aols:
O0LlE:
aoln:
a0ls:
anl3a:
aozo:
a0zl:
Q0zz:
QOE3:
a0za:
aozs:
Q0ZE:
aoET:
a0zs:
anza:
ao0zo:
aozl:
Q02E:
Qo232
a0z
o025
Q026
aozn:
an2s:
a0z3;

SUBEOUTINE LIMIT.CCY. CONJ(OVEERRIDE , TEXT#, CUUREENCY . AMOUNT)
*
= LIMIT CURRENCY CONUEREZION (O0UVERRIDEZ)
*
*
* Currency conwer=ion for limit L& owerdraft owerride meszages.
*
* TEXT ¥ = [in) second part of owerride fext [wariables)
* [out] conwerted amount
* CUREENCY . 2M0UNT = currancys
*
FIMZERT I COMMON

$IMSERT I_EQUATE
*

*===={AIN CONTEOL
*

IF CUBRFENCY . B{0UNT='"' THEN CUBRRENCY.AMOUNT=LCC¥

CURRENCY="'"'; AMOUNT=''
LOOF
EEMOVE 0F FROM TEXT# SETT IN: REMOUE§
EEGIN CASE
CASE 0K MATCHES '2&'; CURRENCY=0E ;¥ currency adssumed to be _ ..
CASE MM [OK) ;* ... prior to ameunt ...

IF CUREENCYY '' THEW
IF CUBRENCTfCURRENCY . 2MOUTHNT THEW

CALL L IMIT.CUERE. CONV(CURRENCY . 263 (0K) , CURRENCY . 2MOUTHT 2I00THT, ' ')

END EL3E
2MINTHT =AE2 [0K)
END
BEMOWVEF =0
END
CAZE 1
END CABE
WHILE FEMOWVE$ DO
EEFEAT
CURRENCY . BMOUNT =AMOTHT
REETUEN
END

CITFRENCY="" ;* ... [imvmediatelsr]

v

EB.API

Figure 9 - Subroutine details

After the subroutine has been written, it needs to specify in EB.API application

FIELDS DESCRIPTION

ID Specify the name of the BASIC
subroutine

Description Subroutine description

Protection Level Specify the security protection level

Source Type Select ‘BASIC’

Program (ID)

For on-line applications the key to this record must be the same as the program to be run.

Format:

Invoked:
Arguments

Subroutine name

Subroutine name is the name of the application, which can be invoked.
The field TYPE indicates the application type to be executed. For on-

line use this may H,U,L,T,W or M.
From RUN.APPLICATION
None

Application Program Interfaces.doc

Temenos T24 Media Application Program Interfaces.doc

Details:

Any application of types H,U,L,T or W are used to maintain a file and must conform to the
standard TEMPLATE application type. See the section Template Programming for details.

Type M routines are used to execute a specific main line program where there is no
standard file maintenance required, for example a conversion program, or program to print
a report. Where a history is required of a program being run, a type W program should be
used. See the section Template Programming for details.

When a type M program is written, it must contain a SUBROUTINE statement at the start
in order to return to T24 once executed. See the Programming Standards section for
details of commands, which must not be used.

Example:

The parameter file IBLC.PARAMETER contains local reporting codes for Belgium and
Luxembourg reporting. This is a type U routine (i.e. it does not maintain a history file).

B3 Program File Input M=l E3
| BLC PARAMETER 3

1 Type] -1 =

2 Gh Screen Title JIEILC FARAMETER FILE

3 Additional Info [

41 Batch Joh |

& Product =

& Sub Product [

71 Description |

81 Appl For Subr | e

9 Reserved 4

10 Reserved 3

11 Reserved 2

12 Reserved 1

13 Record Status

14 Curr Mo 2 1

18 1 Inputter 1_Ga.0.00

16 1 Date Time 18 DEC 94 17:491

17 Authariser 1_iE58.0.00 na

18 Co Code LIS-001-0001 =
¥

1| [»

Figure 10 — PGM.FILE record for IBLC.PARAMETER

The type M program LIST.LOCK allows an operator to list the active system locks.

Temenos T24 Media

Application Program Interfaces.doc

BY Program File See _ (O]

ILIST LOCK

1 TYPE

[l

2.8 SCREEM.TITLE

3 PRODUCT

14 CURR.MC
151 INPUTTER:
16.1 DATE.TIME
17 AUTHORISER
18 COCODE

19 DEPT.CODE

a4

List Active Locks

EB

1
43_ArDRBEAYICHERS2
13 JUL 01 15025
43_ANDREMAYICKERS
I1=-001 -0004

1

Program

Figure 11 — PGM.FILE record for LIST.LOCK

ao0l:
aooz: *

000g:
aoos;

SUER.0UT INE

0002: * Thi= program performs the LIST_RE2DT command
*

EXECUTE "C3" ;* C(Clear Bcrezn

LIST.LOCK

O00E: EXECUTE "LIST.REAINT"

aan7: CET "Pres=s PReturn to Return to GLOEUTS":

00o0s: INPUT TAIT

aoong: EETITEN

aola: *

0o0ll: END

Figure 12 — Subroutine details

BATCH.JOB

This field is used to define the names of subroutines or jBase commands which may be
executed from the T24 BATCH.CONTROL process. To be executed during the end of day
the BATCH.JOB must be defined on a BATCH record.

Format: @Subroutine name or jBase Command

Subroutine name is the name of the application, which can be invoked.

jBase Command the name of the item defined in the local VOC file to
be executed.

This is a multi-valued field, and several subroutines and or commands
may be executed sequentially.

Invoked: From B.INITIATE.PROCESS
Arguments None.

Details:

A subroutine may be written to perform specific end of day processing. This may have a
variety of functions, such as maintenance of local files/applications, production of reports,

Temenos T24 Media Application Program Interfaces.doc

interface file production etc. See the Programming Standards section for rules when
writing end of day programs.

A jBase command or paragraph can also be executed from this option. Any item
recognised in the VOC file of the correct type may be executed.

Example:
Example of UniVerse list command to produce a report on the JOURNAL file.

E Program File Input !EIE
[JOURNAL LIST 3

1 Type PE -] =

2 Gh Screen Title |

3 Additional Infa &

41 Batch Job JREF’ORT LISER ACTIITY [

4 2 Batch Joh J._IOURNF-.L.LIST

a Product

& Sub Product |

71 Description | =

21 Appl For Subr | o] H
¥

d [

Figure 13 — PGM.FILE record for JOURNAL.LIST

0001l: P& Faragraph to print Actiwity Journal for the day by department by us=er

000Z: LIST F.JOURMAL WITH EID WE 'HEADER' EF¥ DEPT

000z: BY USER EY APFLICATION EY TIME EREARK.ZUP "'E F'" DEFT _

ooo04: HEADER. T S ER ACT IWITY JO0OUTRNAL - DEFARTMENT 'E'" ID.SUP EERERE._ZUFP
UEEE. UWSER. TIME APPLICAT ION FUMCT ION TXN.REF LPTR

Figure 14 - Example of paragraph JOURNAL.LIST

BATCH.CONTROL

API calls like subroutine, script, crystal report or enquiry can be run at the pre batch stage.
Multiple calls may be defined by expanding the multi-values.

Format: Subroutine name
It has to be defined in VOC
SPT Script Name
It has to be defined in F.SCRIPT.DESIGNER
RPT Report Name
It has to be defined in F.REPORT.CONTROL and it has to be a
crystal report.
ENQ Enquiry Name

It has to be defined in F.ENQUIRY

Temenos T24 Media Application Program Interfaces.doc

This is a multi-valued field and several API calls may be executed
sequentially.

Invoked: From BATCH.CONTROL. This routine is called just before control
passes to the batch menu.

Arguments None.

Details: Error messages are passed back in ETEXT.

System Management Customisation

Introduction

This section contains details of options available to users for customisation of system
management. This includes the ability to be able to define commands (or executable
programs) to perform system backups as part of the end of day process.

SPF

The SPF file allows definition of the command(s) used to perform the system backup and
restore at end of day.

UNIX BACKUP and UNIX RESTORE
These fields allow definition of the UNIX backup and restore commands to be executed

when the end of day process is run.
Format: UNIX command name

UNIX command name may contain any UNIX command(s) to be
executed. May also contain a shell script.

Invoked: From SYSTEM.BACKUP and SYSTEM.RESTORE
Arguments None.

Details:
Complex series of instructions may be specified in a UNIX shell script.

For further details see the Backup, Restore and Recovery chapter in the System
Administration Guide and the Helptext on SPF.

Reporting / Enquiry Customisation

Introduction

The T24 utilities REPGEN and ENQUIRY provide several APIs for users who wish to
perform operations on data outside the delivered functionality. T24 also provides options

Temenos T24 Media Application Program Interfaces.doc

for users to redirect output from reports or microfiches, which could include definition of
their own subroutines.

ENQUIRY

The ENQUIRY application provides three main areas where local routines may be added
to provide additional functionality. These are:

» Selection of data where criteria cannot be easily specified within the existing
application (this will be covered under STANDARD.SELECTION).

* CONVERSION routines to manipulate/enhance data to required format.

e BUILD.ROUTINE to build initial data to base enquiry.

Conversion
Local conversion routines may be written to manipulate extracted data.

Format: @ subroutine name

Subroutine name is the name of the jBase subroutine to be executed.
Note the required space between @ and the name.

Invoked: From ENQ.BUILD.PAGE for each item the conversion is associated
with

Arguments None

Details:

The enquiry system has its own common area |_ENQUIRY.COMMON, which must be
inserted at the start of all conversion routines. This allows access to the variables
controlling the enquiry processing. See the insert in GLOBUS.BP for details of all the
variables passed in this common.

The following variables are the most likely ones to be required when writing a conversion
routine:

ID - Current id of the record being processed

R.RECORD | - The current record being processed

O.DATA - The current incoming data being processed. This is also the

returned data.

VC - The current multi-value number being processed

S - The current sub-value number

VM.COUNT - The maximum number of multi-values within the current record
SM.COUNT - The maximum number of sub-values within the current record
Example:

The following example shows a routine, which displays either the actual maturity date of
an LD/MM deal, or displays the number of day's notice:

Temenos T24 Media Application Program Interfaces.doc

a00l: * VWersion 2 EWO09/94 GLOBUS Pelease No. G5.0.00 13704795
a0og: SUBROUTINE LD.ENQ .MATDATE

anoz:

0004: * Enquiry =subroutine to conwvert final matarcity date

aoas:
anos:
aooT:
0005: FINSERT I_COMMON

0003: $INSERT I _EQUATE

0010: FINSERT I_ENQUIRY.COMMON

o0ll:
aolz:
a0l
o0ls: EEIN CASE

aols: CASE 0.DATA EQ '!

aols: CASE 0.DATA EQ 0O

aoln: 0.DAT& = 'CALL'

a0ls: CAZE 0.DATA LT lo00

anl3: 0.DATA := ' DAYS HICE'
aozo: CAZE OTHERWIZE

a0zl: DISPLAY = 0.DATA
Qozz: CALL MBK(1l,.'D')

aozz: 0.DATA = DIZPLAY

O0E%: EMD C&EE

a0gs:

a0z&: RETUEN
aozn:

a0zs: EMD

Figure 15 - Subroutine details

BUILD.ROUTINE

A routine may be called prior to the selection phase of the enquiry when running the
enquiry. This routine should be used to manipulate the data prior to selection, for instance
it could be used to build a work file.

Format: Subroutine name

Subroutine name is the name of the jBase subroutine to be executed.
More than one routine may be specified.

Invoked: From T.ENQUIRY.SELECT and S.ENQUIRY.SELCTION

Arguments ENQUIRY
: Where ENQ is a dynamic array containing the entered selection

criteria as follows:

ENQ<1> Name of enquiry
ENQ<2,x> Selection field names
ENQ<3,x> Associated Operands
ENQ<4,x,y> Data List

Details:

The data passed in ENQ should be used within the subroutine to determine the action to
be taken. Data is not required to return to the enquiry system.

External Link to Enquiries

The enquiry system is not dependent on being invoked by the selection screen ENQUIRY.
It can be invoked from applications (providing they are running under T24) using the
following argument syntax:

CALL ENQUIRY.DISPLAY (QQQ)

Temenos T24 Media Application Program Interfaces.doc

Where QQQ is a dynamic array with the format:

QQO<1> Enquiry name (key to F.ENQUIRY)
QQQ<2,x> Selection field names

QQO<3,x> Associated selection operands
QQQ<4,x,y> Associated selection data
QQ0<9,z> Multi valued list of sort requirements
QQQ<10> Display mode can be:

OUTPUT - Print in report format
Null - Display to screen
P - Print of screen format

Standard Selection

The STANDARD.SELECTION application allows definition of local subroutines, which can
be used as selection items in the Enquiry system. These can be used within enquiry to
perform selections of data not possible through the existing system.

They can also be used to build virtual records containing data from different files; this can
be achieved using a NOFILE record type.

SYS.FIELD.NO and USR.FIELD.NO

These fields are used to hold the routine name when the associated SYS.TYPE or
USR.TYPE is a type R.

Format: Subroutine name
Subroutine name is the name of the subroutine to be executed.
Invoked: From CONCAT.LIST.PROCESSOR

Arguments RTN.LIST
: Where RTN.LIST is a dynamic array containing the selected keys to be
returned to the enquiry system, separated by field markers (@FM).

Details:

The main purpose of using a routine at this point is to return a list of keys for the enquiry
process to use. Possible reasons for using a routine may be: the selection required might
not be possible to be entered directly into the enquiry system; require additional checks; or
the selection may simply be too slow and may require an alternative access method.

Since the routine will need to use the common enquiry variables, the insert
|_ ENQUIRY.COMMON should always be inserted at the top of the subroutine. The main
variables likely to be required are:

D.FIELDS - Contains a list of the Selection Field
Names

D.LOGICAL.OPERANDS <X> - Contains a list of the associated operands
entered in numeric form. The following
values are used:
1EQ
2RG

Temenos T24 Media Application Program Interfaces.doc

3LT
4 GT
5 NE
6 LK
7 UL
8 LE
9 GE
10 NR
D.RANGE.AND.VALUE <X,Y> - Associated entered values

The routine must perform the required processing to build the RTN.LIST. Note that if this
routine is being used to “pre-select” data ready for a further selection within the enquiry
system, if no records are returned, the enquiry system will attempt to select the whole file.
This may have performance implications.

NOFILE Standard Selection Records

Where an enquiry is required to show data, which cannot be extracted, from a specific file,
it may be necessary to create a NOFILE STANDARD.SELECTION record. As its hame
implies the STANDARD.SELECTION record does not describe an existing file. This
standard selection item can be used in ENQUIRY as a valid FILE.NAME.

Since there is no actual underlying file in the system, the selection must be performed by a
routine, described in the previous section. An additional CONVERSION routine will usually
be required to build R.RECORD, the record used in the enquiry.

For example an enquiry may be required which is driven from two files, A and B.

A NOFILE STANDARD.SELECTION record will be created containing at least one
field, used to define the selection routine

* The selection routine selects files A and B and returns a list of keys in the format
filename*id

* A conversion routine is written, so that given filename*id it will read the correct file, and
build the data into a common format in R.RECORD

» The routine is attached to field O in the enquiry, so that as soon as field O is processed,
R.RECORD contains the expected layout with data extracted from the correct file.

REPGEN.CREATE

The repgen utility allows use of subroutines in two areas:

* MODIFICATION
* FL.DECISION.FR

FL.DECISION.FR

Repgen allows a subroutine to be entered to perform a selection. The value SUB must be
entered in FL_DECISION to indicate that this field contains a sub-routine definition.

Temenos T24 Media Application Program Interfaces.doc

Format: Subroutine name

Subroutine name is the name of the subroutine to be executed. Only
one subroutine may be defined per read file. The subroutine name
must be defined on PGM.FILE file as a type S application.

Invoked: From RGS.... program generated.

Arguments FILENAME
: Where FILENAME is the full filename to be selected.

Details:

The routine should perform the required selection of the FILENAME supplied and return an
ACTIVE select list to the RGS... program.

The REPGEN.SORT record is available in R.NEW, and may contain specified values in the
fields CONSTANTS.

Example:

The following routine selects CUSTOMER records with a specified account officer or
customer number. Account officer is specified in Value 1 of the field CONSTANTS, customer
number is specified in Value 2.

0001l: * Jer=iem 1 07/10/92 GLOEUS Belea=e Ho. 1Z2_.Z2.0 15/ 11732

anoz: SUEROUTTINE R 3EL.CUST . FOR . CENTRALE(FILEMAME)

aooz:

oo04: § INSERT I COMMON

0005: FINSERT I_EQUATE

000&: $IMSERT I_F.FEPFGEN.ZORT

aooT:

Qoos:

0009: * First comment line = account officer

0010: * Becond comment line = customer numbers

0011: * Third comment line = report currcency

Qolz:

anlz: =ET . ACCOUNT _OFFICERS = BR.NEW(RF.3RT.CON3STANTS)<1, 1

a0ld: COMUERT 3M TO EPACE(Ll) IMN GET.ACCOUMT.OQFFICERE

aols: GET . CITSTOMERS = B_NEW(ERG=. 3BT . CONZTAMT = 11, &

a0ls: COMJERT ZM TO SPACE(Ll) IN GET .CUST MERS

aolv:

anls: EE-IN CASE

anl3: CAZE ET.ACCOUNT . OFFICERE

a0z0: SEL.COMMI = U“IELECT ":FILENAME:" TITH ACCOUNT.OFFICER EQ
": @ET . ACCOUNT .0FFICERS

anzl: CAZE COUNT(GET .CUSTOMERE, ' ')

anzz: SEL.COMI = "BELECT ":FILENMAME: " WITH RID EQ "::ET.CITETOMEERS
a0z3: CA3E ET.CIUSTOMERS WNE '!

anz4: SEL.COMI = "SELECT ":FILEWAME:" '":&ET.CUSTOMERS:"'"
anz5: CA3E 1

O0ZE: SEL . COMM="ZELECT ":FILEWAME: " WITH PRINT .CENTBALE Ef '¥'"
anzT: END CASE

Qozs:

anza: CaLL !'HISHIT(1)

a020: EXECUTE SEL.COMM

a02l: CALL !'HMTZHIT(O)

Qo2z:

a0z EETITREN

a02d: END

Figure 16 - Subroutine details

Modification
The MoDIFICATION field allows a sub-routine to be called to manipulate the extracted data.

Format: @ Subroutine name#n

Temenos T24 Media Application Program Interfaces.doc

Subroutine name is the name of the jBase subroutine to be executed.
#n denotes the argument number in the call to the subroutine.

The subroutine must be defined in PGM.FILE as a type R routine,
together with the required number of parameters in field
ADDITIONAL . INFO as .PAR(XX, ..xXx).

The actual name of the sub-routine must be defined in the PGM.FILE
record in the field BATCH.PROCESS prefixed by a @.

Invoked: From RGS.... program generated.

Arguments Par; Pary
: Where Par, may be any number of parameters (at least one) as per

) the definition in PGM.FILE.

Details:

All details required in the subroutine from the repgen must be passed into the subroutine
as separate arguments. A single value may be returned.

Example:
The following routine returns a formatted LIMIT.REFERENCE with leading zeroes.

‘ Program File S5ee M=l E3
ILIMIT.REF ey
1 TYFE bR =
2.GB SCREEN.TITLE LI REF
3 ADDITIONAL INFO PAR[A A
41 BATCH.JCH LI REF
S PRODCUCT LK
7.1 DESCRIPTICN Feturns the Limit Ref figld from —
7.2 DESCRIPTION Account reformatted =0 as it may
7.3 DESCRIPTICN be uzed as the key for the Limit
7.4 DESCRIPTICN file. hd
14 CURR. MO 1 =
¥

Figure 17 — LIMIT.REF routine in PGM.FILE

Program

Temenos T24 Media Application Program Interfaces.doc

o0n0l: SUEROUTINE LIM._EEF (Y¥.LIMIT .REF. IN,¥_LIMIT .REF.0UT]
0002: * Bubroutine to return the LIMIT.BREF field from the Account
0002: * Pecord with the correct number of serc=x added in front =o
0003: * that i.e. can be used to read the LIMIT file.

o0ns:
o006
aonn:
a00s:
a0g0g:
aolo:
o0ll:
a0lz:
o012:

Incoming:
¥_LIMIT .FEF.IN - LIMIT.REF fie=ld from Accowunt rscord in the
format X300 Hf where XXX can bBe 1 to 7 char nuam

Jutgo ing:
Y¥_LIMIT . EEF_OUT - 0000XXY _ff Zero=x added to maks the Limit
referance a= 7 chars.

+ 4 4 4 4 4 4 34

a0la: 2ER0Z = '0000000!

aols: ¥.TEMP.LIMIT.REF = FIELD(¥.LIMIT.REF.IN,'.'.1l)

aolE: LEW.LIM.BET = LEN(Y.TEMF.LIMIT.REF)

aolT: NO_OF_ZERO3 = 7 - LEN.LIM_EEF

a0ls: ¥T.LIMIT.REF.O0IT = ZEROZ[1,H0_0F.ZER0O3]:¥ . LIMIT.PET. IN
anl3: I ¥Y.LIMIT.REF.IN = '' THEW ¥.LIMIT.REF.0UT = "'
aozo: END

Figure 18 - Subroutine details

RE.STAT.REQUEST

An alternative print routine may be specified instead of RE.STAT.REQUEST to produce CRF
reports.

PRINT.ROUTINE
Alternative print routine to RE.STAT.PRINT standard routine

Format: Subroutine name
Subroutine name is the name of the subroutine to be executed.
Invoked: From RE.STAT.REQUEST$RUN

Arguments Report Params, Output Mode, Lang Code, Base Currency

: Where Report Params contains the name of the report, plus *D is the
detailed report has been requested, or *B if both summary and detalil
are requested.

Output Mode contains the output mode requested

Lang Code contains the language code requested

Base currency contains requested base currency

Details:
Production of CRF reports is a complex process — extreme care should be taken if using

this option.
CREATE.FICHE.TAPE

Allows definition of a command (or routine), which can be used to create a fiche file.

TAPE.CREATE

Any jBase command or subroutine may be specified here. Usually a UNIX cat command
will be used to build a file.

Temenos T24 Media Application Program Interfaces.doc

Format: Command
Command may be any executable command from jBase.
Invoked: From EXECUTE.COMMAND.

Arguments None

Details:

The routine is driven from F.FICHE.HOLD.CONTROL, and will be able to pass the id in the
command line. This can then be accessed within any required routine using the system
variable @SENTENCE.

For example, the command specified could be:

LOCAL.FICHE.LOAD &FICHE.HOLD.CONTROL>@ID&
The routine would then have to check @SENTENCE[" “,2,1] in order to extract the id.

See the Helptext for further examples.

PRINTER.ID

Allows definition of a command (or routine) that can be used to create a file of printed
output. This means that whenever T24 output is directed to this printer id, the command
will be invoked.

Command

Any jBase command or subroutine may be specified here. Usually a UNIX cat command
will be used to build a file.

Format: Command
Command may be any executable command from jBase.
Invoked: From EXECUTE.COMMAND.

Arguments None

Details:
The routine is driven from F.HOLD.CONTROL, and will be able to pass the id in the

command line. This can then be accessed within any required routine using the system
variable @SENTENCE.
For example, the command specified could be:

LOCAL.PRINT.LOAD &HOLD.CONTROL>@ID&

The routine would then have to check @SENTENCE[" “,2,1] in order to extract the id.

See the Helptext for further examples.

Temenos T24 Media Application Program Interfaces.doc

Delivery System

Introduction

The T24 delivery system provides the ability for user defined routines for mapping
messages, control of disposition, processing SWIFT interfaces, and for formatting inward
and outward Swift messages. The Delivery system has been further opened up to enable
users to define their own formatting rules for messages and to write interface routines,
using the Generic Delivery Interface.

DE.FORMAT.SWIFT

The DE.FORMAT.SWIFT application allows a subroutine to be called for a particular Swift
Field when processing incoming Swift messages

INWARD.ROUTINE

Format: Enter Y in field.

Subroutine must be called DE.ICONV.nn where nn is the SWIFT field
tag, e.g. DE.ICONV.61.

Invoked: From DE.I.FORMAT.SWIFT.MESSAGE.

Arguments FIELD, LINE

: Where FIELD contains the data from the SWIFT message for decoding
LINE contains the decoded message. Field markers should separate
each component of the LINE using the field marker, (@FM).

Details:

A routine may be written where a SWIFT field contains several components, which need to
be separated and possibly converted so that incoming processing can correctly handle the
message.

Example:
The following routine decodes swift field 32, which is comprised of:

* Value Date (6 chars)
e Currency (3 alpha)
* Amount

E.g. 010195GBP1234,56

Temenos T24 Media Application Program Interfaces.doc

SUEROUTINE DE.ICONV. 22 (FIELD,.IECODED.LINE)
*

* Decode=s =tatement line from SWIIT format to field=s on records
*

INSERT I_COMION
¥ INSERT I _EQUATE
b —

* DECODED .LINE<1l> = Walue date
* <E2> = Currancy
<3> = Amount

+

*
TWALTE.DATE = FIELD[1.6] ;* Walus date
CCY¥ = FIELD[7, 2]
2MOTHT = FIELD[10,20]
*
CONVERT " TO *.° IN BMOUTHNT ;* Zwount ix =tored mith , decimal=
+
DECODED.LIME<1l> = VALUE.DATE
DECODED .LIME<Z> = CCY
DECODED .L IME<22 = ZMOUNT
*
ERETUEN
ERD

Figure 19 - Subroutine details

DE.WORDS

This application allows a user routine to be defined for a given language to allow
translation of numbers to words.

Format: Subroutine Name

Invoked: From DE.O.FORMAT.PRINT.MESSAGE
DE.O.FORMAT.TELEXP.MESSAGE
PRODUCE.DEAL.SLIP.

Arguments IN.AMT, OUT.AMT, LINE.LENGTH, NO.OF.LINES,ERR.MSG

= Where IN.AMT contains the amount to be converted to words. Note
that this may also be in the format amount*CCY where CCY is the
SWIFT currency code. When this option is passed, the currency code
could be translated and appended to the amount returned.

OUT.AMT contains the alpha character representation of the amount
to be returned.

LINE.LENGTH may be passed with the maximum length of the
amount. When this is exceeded the amount should be split into multi
values.

NO.OF.LINES may be passed. This can be used to format the amount
to a specific number of lines. Blank lines should be padded with a
character (such as “*”) as these may be used in cheque printing.

ERR.MSG is used to return any error message related to errors
encountered in processing.

Details:

Where a new language is used which does not fit into the existing DE.WORDS format, or
requires special processing, a routine should be written to perform the conversion of
numbers to words. This may reference a DE.WORDS record for the language if required.

Temenos T24 Media Application Program Interfaces.doc

DE.DISP.CONTROL

A user-defined routine may be called to provide enhanced selection for disposition control.

FIELD.NAME

Allows a subroutine to be defined to return either true or false depending on a selection
match.

Format: @Subroutine name.
Must be an entry in the VOC of type V.
Invoked: From DE.DISP and DE.O.DISPOSITION.CONTROL

Arguments The routine is passed the current DE.O.HEADER record in argument

. one, the OPERAND in argument two and the CONDITION in argument
three. The return argument is argument four and should evaluate to
true (1) or false (0 or null).

Details:

The routine itself should perform a selection and determine a match and set the return
argument accordingly.

DE.MAPPING
The DE.MAPPING application allows a user subroutine to modify the information passed

to APPLICATION.HANDOFF by the calling application and hence to map additional data,
which is not normally available for the message type.

Routine
Allows a subroutine to be defined, which may modify the contents of the delivery hand-off.

Format: @Subroutine name.
Must be an entry in the VOC of type ‘V'.
Invoked: From APPLICATION.HANDOFF.

Arguments A DIMensioned array of the nine hand-off records is passed as the first
: argument and a null in the second argument, which is used as a return
error message.

Details:

The routine is passed all nine of the hand-off records in a DIMensioned array as the first
argument and if there is a value in the second value on return from the routine the
mapping does not proceed and the error message is handed back to the calling
application.

If all the records are blanked by the call to the user routine the mapping process does not
proceed and an error returned to the calling application.

Temenos T24 Media Application Program Interfaces.doc

DE.CARRIER

The delivery carrier file, DE.CARRIER, contains details of all the carriers available in
Delivery. To enable a carrier, it must be specified on the Delivery Parameter file,
DE.PARM.

The id of this file is the name of the carrier, as used in DE.PRODUCT. Each record
contains the address type to be used for the carrier (i.e. when accessing DE.ADDRESS),
the formatting rules (DE.FORMAT.CARRIER) and the carrier module (e.qg.
DE.O.CC.SWIFT). If the carrier module is GENERIC, i.e. the messages are handled by
the generic program DE.CC.GENERIC, then the interface must be specified. The
interface must reference a record on DE.INTERFACE, which contains details of the
protocol for all generic interfaces (non-generic interface details are stored on the
parameter file, DE.PARM).

When the record is authorised, formatting and carrier files are created if they do not
already exist. These files are F.DE.O.MSG.format-module and F.DE.O.PRI.format-module
for the formatting files and F.DE.O.MSG.interface and F.DE.I.MSG.interface for the
interface files.

Address

Specifies the type of record to be read from the delivery address file, DE.ADDRESS, to get
the address for this carrier the following can be keys can be used:

E.g. ADDRESS could be specified as SWIFT. Therefore, the delivery address file will be
accessed with a key of:

company-code “.” “C-" customer-no “.” “SWIFT” “.” address-no

E.g. USD0010001.C-10001.SWIFT.1

Carrier Module

Specifies the formatting module to be used. The rules describing the formatting of the
messages should therefore exist on the file, DE.FORMAT.format-module, e.g.
DE.FORMAT.SWIFT. Various formatting modules are included in T24 (e.g. SWIFT,
PRINT, different telex formats). However, new formatting modules can be written. The
formatting rules would be specified on a new table, DE.FORMAT.carrier-module.
Therefore, a template-type program DE.FORMAT.carrier-module must be written to define
the formatting rules. The messages will then be formatted by the formatting program,
DE.O.FORMAT .format-module. MESSAGE, which would also need to be written.

Interface
Specifies the name of the interface to be used. The CARRIER.MODULE must be specified as
“GENERIC”. Messages will be processed by the generic delivery interface,

DE.CC.GENERIC, but will be sent/received by the interface routines specified on
DE.INTERFACE. The name of the interface specified in this field must reference a record
on DE.INTERFACE.

Temenos T24 Media Application Program Interfaces.doc

DE.INTERFACE

This file contains details of the protocols for all interfaces which use the Generic Delivery
Interface. The protocols for interfaces written prior to the introduction of the Generic
Delivery Interface are either stored on DE.PARM or are hard-coded in the program.
Sequence numbers for existing interfaces are stored on F.LOCKING.

The id of the file is the interface as defined in the interface field on DE.CARRIER.

There is little validation of the fields on DE.INTERFACE. This is to allow for maximum
flexibility when new interfaces are written. Each field can be used to control how the
interface is defined and used, more information on this can be found in the Helptext.

OUT.IF.ROUTINE

Defines the name of the interface routine, which is called from the generic delivery
interface program, to send the messages to the required carrier.

If this field is left blank, the messages are still written to the interface file, but it is assumed
that a separate program is invoked at a later time to send the messages (for example, to
create batched messages once a day).

Format: Subroutine name
A VOC entry must exist
Invoked: From DE.CC.GENERIC.

Arguments: MISN - the message sequence number
MSG - the formatted message to be sent

Details:

The routine is called from DE.CC.GENERIC, the generic delivery program.
DE.CC.GENERIC controls all the updates of the delivery files - the outward interface
program merely has to send the message to the interface required. The routine is
“executed”. Therefore, the routine does not have to be an Info/Basic routine. However, a
VOC entry must exist for it.

IN.IF.ROUTINE

Defines the name of the interface routine, which is called from the generic delivery
interface program, to receive messages from the required carrier.

Format: Subroutine name.
A VOC entry must exist
Invoked: From DE.CC.GENERIC.

Arguments GLOBUS.REF - the 5-digit sequence number

: CODE - a code determining the type of message (ACK (positive
acknowledgement), NAK (negative acknowledgement) or blank for an
incoming message)
MSG - the formatted message to be sent
R.HEAD - a dynamic array of the delivery header record

Temenos T24 Media Application Program Interfaces.doc

Details:

The routine is called from DE.CC.GENERIC, the generic delivery program.
DE.CC.GENERIC controls all the updates of the delivery files - the inward interface
program merely receives messages and acknowledgements (positive or negative) from the
interface required. The routine is “executed”. Therefore, the routine does not have to be
an Info/Basic routine. However, a VOC entry must exist for it.

The delivery header record is passed back from the routine. Although this record will be
created by DE.CC.GENERIC, the interface routine can populate any fields recognised in
the message.

DE.MESSAGE

A routine can be defined to process inward messages to generate Funds Transfers using
the OFS module.

IN.OFS.RTN

A default routine, FT.OFS.DEFAULT.MAPPING is available for message types 100, 200,
202, and 205.

Format: Subroutine name.
Subroutine must be defined in PGM.FILE as a type S program.
Invoked: From FT.OFS.INWARD.MAPPING.

Defined in IN.DIR.RTN on OFS.SOURCE, this routine is called from the
OFS phantom process OFS.REQUEST.MANGER.

Arguments DEILMSG.FT.IN key

: R.INWARD - mapped from delivery system
R.SWIFT - swift message text
MESSAGE.TYPE - e.g. 100, 200, 202
R.DE.MESSAGE - DE.MESSAGE record
OFS.KEY - returned OFS message key
OFS.MESSAGE - returned OFS message

The source code for FT.OFS.DEFAULT.MAPPING is released and a detailed description
of the default mapping logic follows.

FT.OFS.DEFAULT.MAPPING

R.INWARD

This record is mapped from incoming SWIFT messages by the delivery system, and is
used to create OFS messages, which will in turn create Funds transfers.

Field Ho | Field Bame Ilap from | Swift field
CUSTOMEE. 50
LIGSG TYFE
T REF NO 20
EELATED EFF MO 21
VALUUEDATE 32
CURRENCY
ANOTUNT
CORDER. CUST 52
CFD BE. CL 52
ORD BE ACC 52
CORD BE. CTI3 51
S.CORBECD 53
S.CORBE ACC 53
S.CORBECUS 53
E.COR B CD 54
E.CORBIK ACC 54
E.COR.BI.CU3 54
INTWED BE.CD 56
INTWED BE. ACC 56
INTWED BE. CUZ 56
ACCWITH BE. CD 57
ACCWITH BK ACC 57
ACCWITH B CTIS 57
BEN. BKE.CD 58
BEN. BANK ACC 58
BEM BANE.CUS If message type = 200 =et to

CUSTOMEE.
BEMN ACCT.NO 59
BEMN.CUSTOMEE. 59
PAYWMENT DETAILS
BEN. OUR. CHAR GEZ
BE. TO.BE INFO
CUS CONPANY
CONP ANY
DEPT.CODE
AFF FORMMAT
LAMNGUAGE

Figure 20 - FT.OFS.DEFAULT.MAPPING details

File: FUNDS. TRANSFER

Following fields are mapped from R.INWARD, and then used to generate an OFS
message.

FT Field Hame Iulap to FT Inward figld
TRAMIACTION. TYFE
DEBIT ACCT.NO
[NDEBIT ACCT NO [f 3. COR B CUIS then
S.CORBE CUS elze
[f R.CORE.BE.CUS then
E.COR.BE.CU3
CURREMNCY MET DR
DEBIT.CUREEMCY CUEEENCY
DEBIT ANMOUNT ANOTUNT
DEBIT VALUE DATE VALUUEDATE
INDEBIT VALUE DATE VALUUEDATE
DEBRIT THEIE REF T EEF NO
CREDIT THEIE EEF REELATED EFF NO
CREDIT ACCT.HO
CURRENC Y LET. CE.
CEEDIT.CURREENCY
CREDIT ANOUNT
CREDIT VALUFE DATE
TREASURY RATE
NEG DEALFR REEF NO
FROCESSING DATE
CEDERING. CUST FTIN OEDERIMNG.CUST
[N ORDERING. CUST CEDEER.CUST
COEDERIMNG. B ANE FT.IN OFDERIMNG B AWK
[N ORDERING BANE LIV [f ORD BEL ACC then
CFED BE ACC
Elze
CFRD BE. CTIS

If ORD BE.CUS then
<], 2> =0RD BK.CU3
If field still rall then set to

CUSTOMEE.
ACCT WITHBANE
N ACCT WITHBANE
BEM ACCT.NO
[N BEMN ACCT. MNO BEMN. ACCT.NO

BEM. CUSTOMEER

IN.BEN. CUSTOMER.

BEN CUSTONEE.

BENM. BANK

Figure 21 - Inward mapping field details in Funds Transfer

FT Field Mame Iulap to FT Inward field
[N BEIM. B ANE [f BEN. B AN ACC then
BEM BAMNK ACC
[f BEN. B AN CTIS then
BEM BAMNI CTIS
CHEQUE NULBEE.
PAYMENT DETAILR PAYMEMNT LETAILS
INPAYIWENT DETAILS PAYMEMNT DETAILS

BCBANE SORT.CODE

EECEIVER BANE

FEEC.CORE BAMNE

INTEELED. B ANE

L IN INTEREMED, BANE

If INTWED . BE. ACC then add
toy [INTWED BE. ACC

If INTWED. BE. CTI3 then

Add my INTVED BE.CUS

MAILING

PAY METHOD

BEM OUR. CHARGES

[N BEM OUE. CHARGES

BEMN. OUE CHAR.GES

CHARGES ACCT . HNO

CHARGE COMDISPLAY

CONDWIZZION CODE

[f BEN.OUE. CHARGER then
If BEMN.OUR.CHARGE: =
"BEM" then zet to "C"

If ="0UR" et to "I

[f BEN.OUE. CHARGES ="
=et to "C"

COWDMIZSION. TYPE

CONDIEEION AN OUNT

CHARGE.CODE If BEMN OUR. CHARGES then
If BEMN.OUE.CHARGE: =
"BEMN" then st to "C"
If ="0UR" et to "I
I[f BEN.OUE. CHARGES ="
Set to "C"

CHARGE TYPE

CHARGE ANT

CUSTOMEE. SPRE AT

BARE CURRENCY

Figure 22 - Inward mapping field details in Funds Transfer (cont.)

FT Field Mame

Ivap to

FT Inward field

FEROFIT.CENTEE.CUST

FEOFIT.CENTEE.DEPT

EETURMN. TO.LEPT

FEIOEITY T

BE.TOBE. INFO

BE. TOBK INFO

INBE. TOBE INFO

BE. TOBK INFO

EXPOSURE DATE

FED FUNDG

PORITIOM. TYPE

NO.OF BATCH ITERE

FEEE TEXT MEGTO

MEZSAGE

LOCAL REF

TAX. TYPE

TAX ANT

ANMOUNT DEBITED

ANMOUNT, CEFDITED

TOTAL CHARGE AROU
NT

TOTAL TAX ANOTUNT

CUSTOMERE.EATE

[N EEC CORF. BE

INWARD PAY TYPE

[N SEMND. CORE.BE

If 5. COR.BE. CUS then
= CORLBE.CUIS elze

If E.CORE.BE. CUS then
E.COR.BE.CUZ

TELEX FROW. CUST

If CUSTOMEE. iz a GLOBUS
custotner then set to shott natme
Elze zet to CUSTOMEE.

DELIVERY INEEF

@ID OF IMNWARD

DELIVERY OUTEEF

CEEDIT.COMP. CODE

DEBIT.COMP. COLE

aTATUR

DELIVER Y WK

BATCHHMO

ACCT WITHBE ACHO

Figure 23 - Inward mapping field details in Funds Transfer (cont.)

Temenos T24 Media Application Program Interfaces.doc

FT Figld Hame Iulap to FT Inward figld
Loc AMT DEBITED
LOC. AMT CEEDITED
LOC. TOT. TAX AMT
LOCAL CHARGE ANT
LOC PO CHGE ANT
LKTG EXCHPROFIT
FEATE INPUT MEFE.
CUST GROUP LEVEL
DEBIT. CUSTONER.
CREDIT.CUSTONER.
SEND PAYIENT

DR ADVICE REQD
CR.ADVICE REQD
DEAL MWARKET
CHARGED CUSTOMEE.
INEEASON OVE
DEALFR DESK
RECALC FWD REATE
EETURN CHEQUE
DEAWN ACCOUNT

Figure 24 - Inward mapping field details in Funds Transfer (cont.)

SPECIAL.FIELDS

W.ACCOUNT . FOUND set to account number, (may not be a T24 account number).
W.ACCT.FOUND set to TRUE if an account is found.

W.INTER.WITH set to TRUE if an intermediary is found.
W.ACCOUNT.WITH set to TRUE if an account with a beneficiary is found.

DEBIT.ACCOUNT LOGIC in order of processing

Call TEST.RECEIVER.CORR if no account found, then call TEST.SENDER.CORR If no
account found call TEST.SENDER.BANK.

If account found, then read ACCOUNT file to check if it is one of ours.

RECEIVER.CORR Swift field 54 MT100, 202, 205
Uses FT. INWARD R.CORR fields.

W.CD sette | ECOREBE.CD
WACT sette | ECOREBE ACC
W.CTS cetto | ECORBE.CUS

Figure 25 - SWIFT field 54 mapping

If W.CUS ="" and either W.CD or W.ACC is set then set W.CUS to CUSTOMER

Then calls the routine FIND.CUSTOMERS.ACCOUNT to attempt to determine the
FT.DEBIT.ACCOUNT.

Temenos T24 Media Application Program Interfaces.doc

If an account has been found then:

W.ACCOUNT.FOUND is set to the account number.
W.ACCT.FOUND is set to True to indicate and account has been found.
FT.DEBIT.ACCOUNT is set to W.ACCOUNT.FOUND.

SENDER.CORR Swift field 53 MT100, 200, 202, 205
Only called if w.ACCT.FOUND is false.

Uses FT. INWARD S.CORR fields.

W.CD sette | 5 COREBE.CD
WA cette | 5 CORBE ACC
W.CTTs sette | 5 CORBE.CUS

Figure 26 - SWIFT field 53 mapping

If W.CUS ="" and either W.CD or W.ACC is set then set W.CUS to CUSTOMER

Then calls the routine FIND.CUSTOMERS.ACCOUNT to attempt to determine the
FT.DEBIT.ACCOUNT.

If an account has been found then:

W.ACCOUNT.FOUND is set to the account number.
W.ACCT.FOUND is set to true to indicate an account has been found.
FT.DEBIT.ACCOUNT is set to W.ACCOUNT.FOUND.

TEST.SENDER.BANK Mandatory swift field
Only called if w.ACCT.FOUND is false.

W_CUS is set to CUSTOMER.

N.B. W.CD and W.ACC are not initialised, so should be set to S.COR.BK.CD and
S.COR.BK.ACC.

If CURRENCY is not equal to the local currency then the routine
GET.CUSTOMERS.NOSTRO is called.

If CURRENCY is equal to the local currency the routine GET.CUSTOMERS.VOSTRO is
called.

FT.DEBIT.ACCOUNT will be set to W.ACCOUNT.FOUND, which may be null.

FT.CREDIT.ACCOUNT logic
W.ACCT.FOUND is set to FALSE and w.ACCOUNT.FOUND is set to null.

W.INTER.WITH is set to FALSE.

Temenos T24 Media Application Program Interfaces.doc

The routine TEST.INTERMEDIARY is called.
If an error message is returned then no further tests take place.

W.ACCOUNT.WITH is set to FALSE.
The routine TEST.ACCOUNT.WITH.BK is called.
If an error message is returned then no further tests take place.

If the message type is a 200 then FT.BEN.BANK is set to CUSTOMER.

IF the message type is a 202 or 205 then the TEST.BENE.BANK routine is called.
IF an error message is returned then no further tests take place.

If the message type is 100 then the TEST.BENEFICIARY routine is called.
If an error message is returned then no further tests take place.

If FT_CREDIT.ACCOUNT has been set then the following checks take place.
Read the ACCOUNT.FILE with FT.CREDIT.ACCT.NO.

If no record is found then set FT.BEN.ACCT.NO to FT.CREDIT.ACCT.NO and set
FT.CREDIT.ACCT.NO to null and return with an error message.

If a record is found then set FT_BEN_ACCT.NO and FT.IN_BEN_ACCT.NO to null.
Set FT.CREDIT.CURRENCY to the currency of the account.

If FT.DEBIT.CURRENCY is not equal to FT.CREDIT.CURRENCY then return with an error
message.

If all the above tests have been passed then the following processing takes place.
The FT.TRANSACTION.TYPE will be set to "IT" unless the following conditions occur when it
will be set to "OT".

Message type is 100 and there is an account with bank.

Message type is 200, as there will always be an account with bank and the sender bank is
always the beneficiary bank.

Message type is 202, if there is no account with or intermediary then DW otherwise OT.

If the message type is 100.

If W._ACCOUNT.WITH is FALSE then FT.TRANSACTION.TYPE is set to "IT" otherwise it is set to
IIOTII

If the message type is 200.

FT.TRANSACTION.TYPE is set to "OT"

If the message type is 202 or 205.

If wW.ACCOUNT.WITH is TRUE and FT.BEN.BANK is null then FT.TRANSACTION.TYPE is set to
IIDWII-

Otherwise:

Temenos T24 Media Application Program Interfaces.doc

FT.TRANSACTION.TYPE is set to "OT".
If W._ACCOUNT.WITH is FALSE then FT_ACCT.WITH.BANK is setto FT.IN.ACCT.WITH.BANK.
If W. INTER.WITH is FALSE then FT. INTERMED.BANK is set to FT.IN.INTERMED.BANK.

TEST.INTERMEDIARY Swift field 56 MT200,202,205
If INTMED.BK.CD is set then return with an error.

If INTMED.BK.ACC is set then set FT.CREDIT.ACCOUNT to this value and set w. INTER.WITH and
W.ACCT.FOUND to TRUE and return.

N.B. no validation of the account number takes place at this stage.

If INTMED.BK.ACC is not set then check the INTMED.BK.CUS as follows.

It must not be > 10 characters long and must be numeric otherwise return with an error.

Set w.cus to INTMED.BK.CUS.

Call the routine GET.CUSTOMERS.VOSTRO

Set FT.CREDIT.ACCOUNT to W.ACCOUNT.FOUND.

If an error has been returned by GET.CUSTOMERS.VOSTRO then return.

IF FT.CREDIT.ACCOUNT is not null then set w.INTER.WITH and W.ACCT.FOUND to TRUE
otherwise return with an error.

TEST.ACCOUNT.WITH.BK Swift field 57 MT100, 200,202,205
If an intermediary has been found (W. INTER.WITH = TRUE) then return.

If ACC.WITH.BK.CD is set then return with an error.

If ACC.WITH.BK.ACC is set then set FT.CREDIT.ACCOUNT to this value and set W.INTER.WITH
and W_ACCT.FOUND to TRUE and return.

N.B. no validation of the account number takes place at this stage.

If ACC.WITH.BK.ACC is not set then check the ACC.WITH.BK.CUS as follows.
It must not be > 10 characters long and must be numeric otherwise return with an error.

Set w.cus to ACC.WITH.BK.CUS.

Call the routine GET.CUSTOMERS.VOSTRO

Set FT.CREDIT.ACCOUNT to W.ACCOUNT.FOUND.

If an error has been returned by GET.CUSTOMERS.VOSTRO then return.

IF FT_.CREDIT.ACCOUNT is not null then set W.INTER.WITH and W_.ACCT.FOUND to TRUE
otherwise return with an error.

TEST.BENE.BANK Swift field 58 MT202, 205
FT.BEN.BANK is set to BEN.BANK.CUS.

Temenos T24 Media Application Program Interfaces.doc

IF W.ACCT.FOUND has been set to TRUE then return.
N.B this condition is not present in FT.IN.PROCESSING.

If BEN.BANK.CD is set then return with an error.

BEN.BANK.CUS is checked as follows.
It must not be > 10 characters long and must be numeric otherwise return with an error.

Set W.CUS to BEN.BANK.CUS.

Call the routine GET.CUSTOMERS.VOSTRO

Set FT.CREDIT.ACCOUNT to W.ACCOUNT.FOUND.

If an error has been returned by GET.CUSTOMERS.VOSTRO then return.

IF FT.CREDIT.ACCOUNT is not null then set W.INTER.WITH and W.ACCT.FOUND to TRUE
otherwise return with an error.

TEST.BENEFICIARY Swift field 59 MT100
If BEN.ACCT.NO is set and W.ACCOUNT.WITH is false then read the ACCOUNT file.

If a record is found then set W.ACCT.WITH to TRUE and set FT.CREDIT.ACCT.NO to
BEN.ACCT .NO otherwise set FT.BEN.ACCT.NO to BEN.ACCT.NO.
If BEN.CUSTOMER is not null then set FT.BEN.CUSTOMER to this value and return.

N.B. the current version of FT.IN.PROCESSING has a further section of code, which uses
BEN.CUSTOMER to check for a VOSTRO account. This code will not be executed.

FIND.CUSTOMERS.ACCOUNT
The following logic applies to this routine.

If W.CD is set then the following logic applies.

If the customer is null and the account is set then read the account file to determine if the
account is one of ours, if it is then set FT.DEBIT.ACCOUNT to the account number.

N.B. the above processing does not take place in FT.IN.PROCESSING

Otherwise if the R.CORBK.CD is set to "C" then «call the routine
GET.CUSTOMERS.NOSTRO.

Otherwise call the routine GET.CUSTOMERS.VOSTRO
If W.CD is null and W.CUS is set then the following logic applies

If CURRENCY is not equal to the local currency then the routine
GET.CUSTOMERS.NOSTRO is called.

If CURRENCY is equal to the local currency the routine GET.CUSTOMERS.VOSTRO is
called.

If an account has been found then set the flag W.ACCT.FOUND to TRUE.

Temenos T24 Media

Application Program Interfaces.doc

GET.CUSTOMERS.NOSTRO
Read the AGENCY file for W.CUS.

If a record is NOT found then return.

Locate W.ACC in the NOSTRO.ACCT.NO field of the AGENCY record. If it is found then set

W.ACCOUNT.FOUND to the relevant value, otherwise set it to null.

GET.CUSTOMERS.VOSTRO
This program calls the routine GET.AGENT with the following parameters set.

Parameters et to Parameters Out Description
in
I CTUST WCTTE Customer
IN.CCY CUEREENCY Inward currency
I ATT FT Funds Transfer
EB SWIFT Apgents Swift address
EB COUNTEY Eeceiver bank country
EE NOSTEOC Input customers nostro
accounts
EE VOSTEO Input customers WVostro
accounts
EB TEST SIG Test Signature
CECOUNTETY Corespondent bank country
CE EEGION Corespondent Eegion
O CTUSTOMEE. CB.CTET Corespondent Customer
OQUT ACCOUNTNDT | CEACCT Corespondent A ccount number
MEEE
IE COTUNTEY Intermediate bank country
IE EEGION Intermediate region
IE CUST Intermediate country
IE ACCT. Intermediate account number
EETUEN CODE Hegative = error

Figure 27 - GET.CUSTOMERS.VOSTRO parameters

The following conditions must be met otherwise an error is returned.

The AGENCY record must be present for IN.CUST.

AUTOROUTING must not be set to "NO" on the AGENCY record.

RESIDENCE must be set on the cusTOMER record for IN.CUS.

IN.CCY must be present in the AUTORTE field of the AGENCY record

"FT" or "ALL" must be present in the AUTORTE . APPL field of the AGENCY record.

If the AUTORTE . BANK for the relevant AUTORTE.APPL is set to "VOSTRO" or "CUSTOMER"
then the following processing applies, otherwise the AGENCY record for the AUTORTE . BANK

Temenos T24 Media Application Program Interfaces.doc

for the relevant AUTORTE.APPL is read, and the above validation checks apply to the
new record, if successful the following logic applies.
CB.COUNTRY is set to the residence of the CUSTOMER.

The following fields are set to the values for either "FT" or "ALL" AUTORTE.APPL field, with
"FT" taking precedence.

CB.REGION is set to AUTORTE.REGN.

CB.CUST is set to AUTORTE.BANK.

CB.ACCT is set to AUTORTE.ACCT.

If cB.cuST is set to "CUSTOMER" then it is set to "VOSTRO".

On return from GET.AGENT if OUT.CUSTOMER is set to "VOSTRO" then set
W.ACCOUNT.FOUND to OUT.ACCOUNT.NUMBER.

If OUT.CUSTOMER is not set to "VOSTRO" then read the CUSTOMER.CCY.ACCT file with a
key of W.CUS:CURRENCY:1.

If a record is found then set W.ACCOUNT.FOUND to the first account number in the list.

FD.ACTIVITY

The Fiduciary application allows subroutines to be called to modify the contents of data
passed to delivery from the application.

HANDOFF.ROUTINE

Allows a subroutine to be defined, which may modify the contents of the delivery hand-off
in record number 7.

Format: Subroutine name.
Subroutine must be defined in PGM.FILE as a type S program.
Invoked: From FD.GENERATE.DELIVERY.

Arguments SPECIAL.REC
: Where SPECIAL.REC contains the additional data to be passed to
delivery from the Fiduciary application.

Details:

The contents of SPECIAL.REC must be created within this routine. The Fiduciary common
are |_FID.COMMON is available at this point. The following variables are likely to be
required:

FD$R.ORDER() The current FD.FID.ORDER record
FD$R.PLACEMENT() The current FD.FIDUCIARY record
FD$R.BALANCES() The current balances record

Temenos T24 Media Application Program Interfaces.doc

MG.ACTIVITY

The mortgage application allows subroutines to be called to modify the contents of data
passed to delivery from the application.

HANDOFF.ROUTINE
Allows a subroutine to be defined, which may modify the contents of the delivery hand-off.

Format: Subroutine name.
Subroutine must be defined in PGM.FILE as a type S program.
Invoked: From MG.DE.HANDOFF.

Arguments REC1, REC2, REC3, REC4, REC5, REC6, REC7, REC8, REC9
: Where REC, contains the data to be passed to delivery from the
mortgage application.

Details:

The contents of REC,, may be added to or modified according to local requirements.

Interfaces — Local Clearing

Introduction

T24 provides options for allowing the required additional functionality to be added to the
Funds Transfer module in order to allow local clearing transactions to be entered
according to the local rules. This functionality is provided by the parameter file
FT.BC.PARAMETER for the local clearing transaction types, BC, Bl and BD. The
parameter allows subroutines to be added to perform specific local validation, and update
of cross-reference files and production of additional/new delivery messages.

A further option allows a sub-routine to be invoked from the delivery processing, which can
allow diversion of messages with different carriers into the local clearing system according
to the coded rules.

FT.BC.PARAMETER

This application allows customisation of existing field level validation for the BC Funds
Transaction type. Additionally subroutines may be defined to perform specific local
validation within the FT module in the following fields:

FT.VALIDATION.RTN
FT.DELIVERY.RTN
STO.VALIDATION.RTN
BULK.STO.VALID.RTN

Additionally the ability to define subroutines called from the CUSTOMER and ACCOUNT
applications is provided in the fields:

Temenos T24 Media Application Program Interfaces.doc

ACCOUNT.UPD.RTN
CUSTOMER.UPD.RTN

A subroutine to allow diversion of messages into the local clearing system within the
delivery system may be defined in:

. DIVERSION.RTN

FT.VALIDATION.RTN (FUNDS TRANSFER)

This field allows definition of a subroutine, which will be used to perform cross-validation
specific to the local clearing system. This routine applies to the BC transaction type within
Funds Transfer, and all related transaction types, i.e. BCxx where xx is any alpha
character.

Format: Subroutine name
Subroutine name contains the name of the Info Basic subroutine to be
executed. The Subroutine name defined must exist on PGM.FILE as a
type S program.

Invoked: From FT.CROSSVAL, after standard cross-validation (performed by
FT.BC.CROSSVAL).

Arguments Curr No

: Where Curr No contains the current number of overrides held on the
Funds Transfer record.

Details:

The purpose of a subroutine written at this point is to perform cross-validation of the input
in the EUNDS.TRANSFER record according to the local requirements.

A local clearing common area is available in the insert |_F.FT.LOCAL.COMMON, and
must be inserted at the start of the subroutine, together with Funds Transfer common area
|_F.FTCOM.

The following variables are most likely to be used in the sub-routine:

FTLC$BC.PARAMS Contains the FT BC PARAMETER record for the
system

FTLCSLOCAL.CLEARING Contains the FT LOCAL CLEARING record

R.CREDIT.ACCT() Contains the credit account record

R.DEBIT.ACCT() Contains the debit account record

R.CHARGE.ACCT() Contains the charge account record

All validation must be performed using the contents of R.NEW, the current record.
Management of errors must cater for the fact that the routine will be executed on-line
under user control, on-line automatically (when processing clearing tapes/files), and at end
of day (when processing Standing Orders). The common variable AUTO.PROCESS will
be set to “Y” when processing during the end of day, or automatically on-line. Error
message processing should set ETEXT and call STORE.END.ERROR when NOT
processing automatically, otherwise the routine should return when an error is found.

Overrides may be generated when processing manually on-line, in the standard manner,
by setting TEXT and calling STORE.OVERRIDE.

Temenos T24 Media Application Program Interfaces.doc

Where local reference items are used to contain local clearing elements, a list of elements
can be found in the fields REQ.LOCREF.NAME, REQ.LOCREF.APP and REQ.LOCREF.POS in the
FT.LOCAL.CLEARING record, which give the location within the LOCAL.REF field in the
specified application.

Example:

The following example illustrates wuse of local reference identifiers in
FT.LOCAL.CLEARING. The items SCC.TXN.CODE is mandatory for BC transaction

types:

By Ft Bc Field Definitions See [_ o] =]
|scc a4
48 Mk LENGTH B 4|
58 MIMLENGTH 1
101 APPLICATION —FUNDS TRAMNSFER FUNDS. TRANSFER
1114 LOCITEMREQ RO THM.CODE
11.1.2 LOCITEMRER SCCCOMSTAMT
1143 LOCITEMREQ SCC W ARISELE A
11.1.4 LOCITEMRER SCC W ARILELE 2
1115 LOCITEMREQ SCCSPECIFICA
1116 LOCITEMRER L SCCSPECFIC2
12 ALLOW oY DEBIT 18]
13 FT.WALIDATION RTN FT.5CC.CROSSVAL SCC CROSS VALIDA TION
14 FT DELIWERY RTH FT.BC DELIVERY BC Delivery Program from FT
16 STONVALIDATION RTN FT.SCC.STO.CROSSY AL SCC STO CROSS WALIDA TION
17 BULK STOMSLIDRTH FT.SCCBULK CROSSYAL SCC BULK 5TO CROSS VALIDA TION
20 CHECK SORT CODE YES
21 SORT.CODELEN 7 r
22 SORT.CODE.TYPE A ha
400 CURR. MO 1 %

Figure 28 - FT BC Fields Definitions

B FT.LOCAL.CLEARING Input M[=] E3
|STSTEM [l
Full viw |
18.GB REV.TEXT mREYERSAL
19 MEMACCT.LOC b
20 PAY CODE LOC r |

21 AUTHEMT.CODE
221 REGQLLOCREF MAME gSCC THN.CODE

231 REQ.LOCREF APFP FUMDS. TRAMSFER
241 REQ.LOCREF.POS

4| | r
Figure 29 — FT.LOCAL.CLEARING Input Screen

This code will check to see if the local reference SCC.TXN.CODE contains a value in the
FUNDS.TRANSFER record:

Temenos T24 Media Application Program Interfaces.doc

*
* BCC.TXN.COIE i= taken from LOCAL PEFEREMCE. It i= a mandatory fiezld and mmast
* be present. It'=s position is held in REQ.LOCREF.FO0Z3 on IT.LOCAL.CLEARING for the
* corresponding BEQ.LOCEET.NMIE field.
*

SCC.TXW.CODE_POS = '!

LOCATE 'BCC.TXN.CODE' DN FTLCOY)LOCAL. CLEARING(IT.LC.BEQ_LOCEEF.MAME)<l,l> SETTING
WiME _FOE ELSE N2ME _FO3 = '!

IF NAME_FO3 THENW

BCC_TYW.CODE.POS = FTLCY)LOCAL . CLEARING(IT.LC_REQ.LOCREF.POB)<1,H2ME FOS>
END

SCC.TXW.CODE = BE_MET(FT.LOCAL._PEF)<1l,3CC_TXN.CODE._PO3>-
IF BCC.TXN.CODE = '' THEW

AF = FT.LOCAL .PEF &V = SCC.TXH.CODE._PO3

ETEXT = 'INFUT MANMDATORY'

CALL 3TOFE.ENWD .ERROE
END

Figure 30 - Check if local reference SCC.TXN.CODE contains a value

FT.DELIVERY.ROUTINE (FUNDS TRANSFER)

A routine may be called at authorisation of a Local Clearing Funds Transfer. This may be
used to generate additional delivery messages or to update cross-reference files required
in the local clearing process.

Format: Subroutine Name
Subroutine Name contains the name of the subroutine to be invoked.
Invoked: From FT.DELIVERY before generation of Standard delivery output

Arguments None

Details:

The subroutine must contain the insert files |_F.FT.LOCAL.COMMON and |I_F.FTCOM,
which hold the local clearing common variables and the Funds Transfer common variables
respectively.

Any of the variables described in the FT.VALIDATION.RTN may be used. Any error found
should set ETEXT. This will be detected on return to FT.DELIVERY and cause an error to
be generated by Funds Transfer.

Any additional delivery messages required must be generated by calling the subroutine
APPLICATION.HANDOFF (see Standard subroutine guide for further details). Any delivery
message used for local clearing must use the reserved range 1200 - 1300 of message

types.

Examples:

This routine will update a cross-reference file, FT.BC.XREF when a local clearing funds
transfer is authorised. The record will be deleted if a reversal is authorised. An additional
check is made so that if a reversal is attempted and there is no record present on
FT.BC.XREF, the reversal will be aborted.

SUEROUT INE T .EC.DEL IVERY

Thi= program will updake a cross-reference file FT_EC_XFET which will b=
n=ed to build the ASCII file o be =ment tao the local clearing centre.

&t the authori=ation of an FT, a record will be arbered and at rewver=al
authorization the record will ke deleated. The ID to the cross-referzance file
will be the ID of the IT and the only data required i= the current number of
the FT in £ield 1.

+ 4+ 4 + 4 %

¥INSERT I_COMMON

¥INSERT I_EQUATE

$INSERT I_F.FUNDS _TRANZFER
¥ INSEERT I:F.IT.BE.XRI!]:"

¥ INEERT I_T.ITCOM

$INZERT I_F.FT.LOCAL.COMMON

FZUE IMITIALIZE
IF BE_HEW(FT .RECORD.STATUZ) = 'BEVE' THENW
GO2UE CHECK.PECORD.OM.FILE
IF ETEXT THEH FETURN
F03UE DELETE.RECORD .FEOM.TILE
END ELZE
GOSUE ADD.RECOERD.TO.FILE
END
EETURN

INITIALIGE:

P.FT.EC_XEEF = "'
CALL OPF('F.FT.EC.XEET', F.FT.EC.XEET)

EC.XREF.REC = '!
ETEXT = '
FEAD . FAILED

FETUEN

ADD _RFECORD .TO_FILE:

EC . XRPEF_PEC<FT _ECX. CURPENT _MMMEEER> = E_METW(FT .CUURE _H0)

IF EC_¥PEF._PECFT .ECX . (URREMT.HMEEER>- = "" THENW
EC.XPEF.PEC<FT .ECX . CURRENT .HUMEER>- = 'l'

END

EC XBEFT.BEC<FT .ECX.CR.WVALUE _DATE = E_NEW(IT. REDIT.VALUE.DATE)

IF EC_¥PEF.PECFT .ECX . (R.VALUE DATE> = "" THEN
EC.XPEF.PEC<FT .ECX.(R._.VALUE .DATE> = TODAY

END

CALL F.WEITE('F.FT.EC.XREF', ID.NWET), EC _XREF.FEC) BETUEN

Figure 31 - This routine will update a cross-reference file, FT.BC.XREF

CHECE._PECORD . 0M_FILE:
*

* First check if the record is present in which case delete the record.

* Otherwise the patyment ha=s already been =ment to the clearing system.
*

CaLL F.FEAD('F.FT.EC_XEET', ID.MEW, EC_XFEF.PEC, F.FT.EC_XREF., FEAD.FAILED)
IF RPEAD .FAILED THENW

ETEXT = 'CANNOT REVERSE - PAYWMENT ALREADY ZENT TO CLEARING'
EHD

RETUEN

DELETE .FECOED .FTROM_FILE:
CALL F.IELETE('F.FT.EC.XREF', ID.HNETW)

EET\TEN

*Ek
END

Figure 32- Check if reversal is attempted on FT.BC.XREF

Temenos T24 Media Application Program Interfaces.doc

STO.VALIDATION.RTN (STANDING.ORDER)

A subroutine may be defined to perform cross-validation of STANDING.ORDER records,
which are paid through the local clearing method (EUNDS.TRANSFER BC
TRANSACTION. TYPE).

Format: Subroutine Name

Subroutine name contains the name of the subroutine to be executed.
It must be defined on PGM.FILE as a type S program.

Invoked: From STANDING.ORDER at cross-validation time, when PAY_.METHOD
[1,2] is BC.

Arguments R.FT.LOCAL.CLEARING, R.FT.BC.PARAMETER

: Where R.FT.LOCAL.CLEARING contains the FT.LOCAL.CLEARING
record R.FT.BC.PARAMETER contains the FT.BC.PARAMETER
record.

Details:

The contents of R.NEW should be validated according to local requirements. The
validation should ensure that information entered in the STANDING.ORDER record is
sufficient, and correct, in order to produce a valid BC FUNDS.TRANSFER record.

Error messages must be reported by setting ETEXT and calling STORE.END.ERROR in
the usual manner.

Local reference items required in the Funds Transfer to be generated are entered in the
fields FT.LOC.REF.NO (the position within local reference in Funds Transfer) and
FT.LOC.REF.DATA. The correct position of local reference items within the LOCAL .REF field
in FUNDS.TRANSFER can be checked using the variables REQ.LOCREF.NAME,
REQ.LOCREF.APP and REQ.LOCREF.POS in the FT.LOCAL.CLEARING record.

Example:
The following subroutine performs specific validation for the Slovak clearing system:

SUBROIT INE FT.3CC_3TO. CROZSVAL (LOCAL. CLEARIN-_FEC, EC._FARAM _REC)

+
* This routine will cross-wvalidate field=s use=d in the BC transactions for
* standing orders in the 3CC [Slovadk Clearing Centre] =yrstem.

+*

5 INSEET I_COMPIONW

5 INSEET I_EQUETE

$INZERT I_TF.COMPANY

$INZERT I_T.ACCOUHT

$INZERT I _F.ACCOTHT.FPERMIETEFR
SINGEET I_F.3TAND IN:.ORIEE
SINSEET I F.IT.LOCAL . CLEARING
SINZERT I _F.FT.EBC_PARMIETER

SCC.TXN.CODE i= taken £rom LOCAL REFEFEMCE. It iz a mandatory field and therefore
be presernt. It's position iz held in BFEQ.LOCREEF.FO3 on FT .LOCAL _CLEARING for the
corresponding BEQ.LOCEEF NATE field. This position mumber must be present in £ield
FT .LOC_REEF.HD on the standing order record.

B B B

SCC.TXN.CODE.POS = '!
LOCATE 'BCC.TXN.CODE' IN LOCAL .CLEARING. REC<FT .LC.REQ.LOCREF _WAME,1l> SETTIN:G WAME_FO3
ELSE WaME_POE = '!'
IF WAIE P03 THENW
SCC.TXN.CODE P03 = LOCAL . (LEARING.REC<FT .LC.REQ.LOCEEF.PO3 NAME _FPO3:-
END

LOCATE SCC.TXWN.COLE_FOS IN R.MEW(ETO.FT.LOC _REF.M0)<1,1>- 3ETT IN> TXN.FOZ ELSE TXH.FO3

IF TXW.FO3 = '' THENW
AF = 3TO_FT .LOC_RET_NO
ETEXT = 'INCOMPLETE LOCAL REF DETAILS'
CALL ZTORE.EWD .ERROR
EETUEN
ERD

#+

Malre =ur= EENEFICIAFY ACCTH] =ati=mfis= MOD 11 ~al idation

IF F_NETW(STO_EEN.ACCT.H0) MATCHES 'INON' THENW
AF = 3TO_EENW.ACCT .HO
SAJE .COMI = COMI
CLI = R_HET[AF)
GOZUE CHECK . ACCT MO _TALIDET ION
IF ETEXT THEW
CALL STORE.ENMD ._EFROE
RETURN
EHD
END
COMI = ZBaUE.COMI

If no input is made to the beneficiary field then force inpur
if the payment is to the Czech Republic [defined in £ield PTT.S0RT.CODE
on the FT.LOCAL _CLEZRINGF f£ile].

+ 4 4 4 %

IF BR_HEW(3T0 _BAME S0FT .CODE) MATCHES LOCAL. CLEXRING.RPEC<IT .LC _PTT.S0RT.CODE> THENW
IF F.HEW(ITO _EENMEFTICIARY) = '' THEW
AF = 3TO._EEMEFICIARY: &0 = 1
ETEXT = 'EEMEFICIARY MUUST EE PREZENT'
C&LL 3TORE.END .EFEOE
EETUEN
EMD
ERD

EETURN

Figure 33 - The above subroutine performs specific validation for the Slovak
clearing system

CHECE.&CCT N0 V&L IDAT ION:
SINSERT I CHECK.ACCT .HOQ
EETUEN

*hE
ERD

Figure 34 - Check Account Number Validation

Temenos T24 Media Application Program Interfaces.doc

BULK.STO.VALID.RTN (BULK.STO)

A sub-routine may be defined to perform cross-validation of Bulk Standing Order records,
which are paid through the local clearing method (EUNDS.TRANSFER BC
TRANSACTION. TYPE).

Format: Subroutine Name

Subroutine name contains the name of the subroutine to be executed.
It must be defined on PGM.FILE as a type S program.

Invoked: From BULK.STO at cross-validation time, when PAY.METHODI1,2] is
BC.

Arguments R.FT.LOCAL.CLEARING, R.FT.BC.PARAMETER

: Where R.FT.LOCAL.CLEARING contains the FT.LOCAL.CLEARING
record
R.FT.BC.PARAMETER contains the FT.BC.PARAMETER record.

Details:

The contents of R.NEW should be validated according to local requirements. The
validation should ensure that information entered in the BULK.STO record is sufficient, and
correct, in order to produce a valid BC FUNDS.TRANSFER record.

Error messages must be reported by setting ETEXT and calling STORE.END.ERROR in
the usual manner.

Local reference items required in the Funds Transfer to be generated are entered in the
fields FT.LOC.REF.NO (the position within local reference in FUNDS.TRANSFER) and
FT.LOC.REF.DATA. The correct position of local reference items within the LOCAL .REF field in
FUNDS.TRANSFER can be checked using the variables REQ.LOCREF.NAME,
REQ.LOCREF.APP and REQ.LOCREF.POS in the FT.LOCAL.CLEARING record.

Example:

The following example performs the specific validation for the Bulk Standing Orders in the
Slovak clearing system.

SUEROUT INE FT.3CC. FULE. CROZEVAL (LOCAL. CLEAR IN-.FEC, EC.PARAM_PEC)

Thi= routine will cross-wvalidate fields used in the BC transactions £or
bulk standing orders in the 5CC [Slowak Clearing Centre)] sy=tem.

£

5 INSERT I_COMMON

S INZERT I _EQUATE

SINZERT I _T.COMPANY

% INZERT I_TF.ACCOTHT

$INZERT I F.ACCOUTNT.FPERMIETEER
ZIMNZEFT I T.EULE.ZTO

SINGERFT I F.FT.LOCAL.(LEARING
SINZERT I _F.FT.EC_PARMIETER.

HO.0F.P&? METHODS = DCOUHT(E _WEW(EST.P&Y_METHOD) . UHM)
FOR &7 = 1 TO NO_OF_PAY_METHODS
IF R_NEW(EST .P &Y _METHOD)«<1, &i>-[1.2] = 'BC' THEN

SCC.TXN_CODE is taken from LOCAL REFEFEMCE. It is a mandatory £ield and therefore must
be pre=ent. It'= position iz held in FEQ.LOCREEF.F0O3 on FT _LOCAL .CLEARING for the
corresponding REQ.LOCEEF N3ME fizld. Thi= position mumber mast be prasert in £fiezld
LOC REF.H0 on the bulk =tanding order record.

EE N B)

SCC.TXW.CODE.POZ = !
LOCATE 'BCC.TXN.CODE' IM LOCAL.CLEARING.FEC<FT.LC.FEQ.LOCEET.WAME, 1- SETT IN=
WiME P03 ELSE NMIE .FOS = '!
IF NAME _FO3 THENW
SCC.TXW.CODE.PO3 = LOCAL CLEARING. PEC<FT.LC.FE(Q.LOCREF._PO3 . NAMIE PO3>
EMD

LOCATE BCC.TXN.CODE .FOS IN R.MEW(EST.LOC _REF.HO0)<1,&0,1> SETTIN: TXW.FOS ELSE
TXHW_.F0O3 = "'
IF TEW.FOZ = '' THENW
&F = B3T .LOC_EET.HD
ETEXT = 'INCOMPLETE LOCAL FEF DETAZILE'
CALL 3TOFE .EWD.EFEROER
FETURN
EHD
*

* Make =ure BENETIC.ACCTHO satisfies MOD 11 walidation
*
IF B_NMEW(EST .FEMEFIC . ACCTHO)<1, &f> MATCHES '1NON' THEW
AF = EST.EEMEFIC. ACCTHO
SAUVE.COMI = COMI
COMI = R_WEW[AF)1, 20>
=0Z0E CHECK.ACCT.HO. WAL IDAT ION
IT ETEXT THEN
C&LL STORE.END .ERFOR
EETITEN
END
COMI = BAUE.COMI
END

If ne impur is made to the bencficiary field then force impuk
if the payment is to the Csech Bepublic [(defined in field PTT.S0ET . CODE
on the IT_LOCAL CLEARING £ile).

+ 4 4 # %

IF R_HEW(EST .EAHK . 20RT.CODE) <1, 37> MATCHES
LOCAL .CLEARING.BFECFT .LC_.PTT .30FT . COLE> THEW
IF R.HEWEST .EEKEFTICIARY)<1, &f> = '' THEN
&F = BST.EEMETICIZRY &8 = 1
ETEXT = 'EENEFICIZRY MIIZT EE FRESENT'

Figure 35 - Bulk Standing Order Validation

CALL 3TORE.EWD .ERROER
EETURN
END
END

END
WEXT &0 EETURN

CHECE. ACCT . MO.VAL IDATION:
FIMSERT I_CHECK. ACCT WO

RETUEN

ik

END

Figure 36 - Bulk Standing Order Validation

Temenos T24 Media Application Program Interfaces.doc

ACCOUNT.UPD.RTN (ACCOUNT)

Where a clearing system requires static information from the ACCOUNT file, a subroutine
may be called to update an extract file.

Format: Subroutine Name

Subroutine name contains the name of the subroutine to be executed.
It must be defined on PGM.FILE as a type S program.

Invoked: From ACCOUNT at authorisation before AUTH.RECORD.WRITE
Arguments None

Details:

The contents of R.NEW contain the current ACCOUNT record. R.OLD will contain the
previous authorised contents of the account record.

The FT.LOCAL.CLEARING record can be used top define the position of required local
reference elements within the Account local reference field.

Note: This routine should not perform any validation.

CUSTOMER.UPD.RTN (CUSTOMER)

Where a clearing system requires static information from the CUSTOMER file, a
subroutine may be called to update an extract file.

Format: Subroutine Name

Subroutine name contains the name of the subroutine to be executed.
It must be defined on PGM.FILE as a type S program.

Invoked: From CUSTOMER at authorisation before AUTH.RECORD.WRITE
Arguments None.

Details:

The contents of R.NEW contain the current CUSTOMER record. R.OLD will contain the
previous authorised contents of the CUSTOMER record.

The FT.LOCAL.CLEARING record can be used to define the position of required local
reference elements within the CUSTOMER local reference field.

Note: This routine should not perform any validation.

DIVERSION.RTN (Delivery)

This is the old method used for diverting messages from a standard carrier to the local
clearing carrier. It was used for the Swiss Clearing system (SIC). However, to use this,
changes are required to the Delivery system. Therefore, Generic Delivery was designed
and it is this which should now be used if you wish to direct messages to a local clearing
carrier (see the section Adding a new interface in the Delivery User Guide.

Temenos T24 Media Application Program Interfaces.doc

FT.TAPE.PARAMS

The ET.TAPE.PARAMS application manages import and export of data for the local
clearing system(s) installed. Data is typically downloaded or uploaded onto tapes, or
directly to a specified file. Subroutines and commands may be defined for each type of
interface, which are used for:

LOAD.CMD
LOAD.ROUTINE
UPDATE.ROUTINE
CREATE.CMD
CREATE.ROUTINE
GENERATE.ROUTINE
ENQ.PURGE.ROUTINE

LOAD.CMD

A command or routine may be executed, which will be used to download a tape or file into
a specific directory on the system.

Format: Command name

Command name contains the name of any valid jBase command,
which can be executed. This may also include a subroutine name,
which can be executed. Multiple commands may be specified.

Invoked: From FT.TAPES$RUN when run with LOAD function
Arguments None.

Details:
Typically a UNIX command will be specified prefixed by “SH -c “ to allow the command to
run from jBase. This could also be specified within an InfoBasic subroutine.

The command/subroutine must download the tapef/file into the directory FT.IN.TAPE, with
the name Tape.Name. WORK, where Tape Name is the key to the FT.TAPE.PARAMS
record.

Example:
Example of a load command:

. 1 B DESCRIFTION. PTT TAFE LOAD

DIFECTION. IHWAED
1. 1 LoaAD.CMD. ... BH -c "cpioc -iwvcBm < fdew/zmc0"

. 2. 1 LoaD.CMD.... SH -c “mne LOAD_FILE FT.IN.T2PE/SFTT
£2. £ LoAD.CMOD. ._. _TOEE"

Figure 37 - Example of a load command

This will download a tape using cpio and then move the downloaded file (LOAD.FILE in
this case), to the file PTT.WORK in FT.IN.TAPE.

Temenos T24 Media Application Program Interfaces.doc

The above command could be coded in a subroutine if required.

LOAD.ROUTINE

A subroutine must be written to process the downloaded tapef/file, to extract the main
header information for the file. This contains information required so that an operator can
verify the correct file/tape has been downloaded prior to updating T24 with the contents.

Format: Subroutine Name

Subroutine name contains the name of the subroutine to be executed.
It must be defined on PGM.FILE as a type S program.

Invoked: From FT.TAPES$RUN when the LOAD function is used, after the
LOAD.CMD has been executed

Arguments TAPE.NAME, TAPE.NO, NO.RECS, CR.TOT, DR.TOT, CHECKSUM,
N EBS.CHECKSUM, TAPE.DATE, TAPE.EXPIRY, CALC.CR.TOT,
CALC.DR.TOT
Where:
TAPE.NAME - Contains the name of the tape as defined in
FT.TAPE.PARAMS
TAPE.NO - Contains the serial number of the tape (returned)
NO.RECS - Number of records contained in the tape (returned)
CR.TOT - Total of credit transactions (returned)
DR.TOT - Total of Debit transactions (returned)
CHECKSUM - The checksum contained in the tape (returned)
EBS.CHECKSUM - The calculated checksum (returned)
TAPE.DATE - Date of tape production (returned)
TAPE.EXPIRY - Date of tape expiry (returned)
CALC.CR.TOT - Calculated Credit Total (returned)
CALC.DR.TOT - Calculated Debit Total (returned).

Details:

The routine must process the tape which has been downloaded into a file in the directory
FT.IN.-TAPE with the name Tape.Name .WORK, where Tape.Name is the key to the
FT.TAPE.PARAMS record passed as the first argument to the subroutine. Some systems
will download a separate Header record and trailer record. These must be read from an
agreed location, preferably the FT.IN.TAPE directory.

The subroutine must extract as many of the passed parameters as possible so that
maximum details may be recorded.

Any error detected must be returned in ETEXT.

Example:

The following example extracts the required details from a Swiss PTT tape, which has
been downloaded into FT.IN.TAPE directory, record PTT.WORK.

* Werrion 2 18701794 GLOEYS EBeleare Mo, 1E.5.F 02705594
GUBEUULLAHE FUOFLULCTARE LUAL TAFE RAME, TaFb HU, HU EECG, LE.OLUPL, UECT0r, CHECKSUE,
EE3.CHECK 31, TAPE.DATE, TAPE .EXPIRY, CALC .CE.TOT, CALLC .IE.TOT)
x
$IHIERT I_COMMON
FLMGEEEL 1 EULALTE
*

*% This subrowtine will ewtract the following header detail:s from the
=% Jonmnl oaded UL BEL tape ;-
L TAPE.HO - Tape mamnber header [1,10] field 1

= HU . EELG - Total mmber of records contdined on the tape
B8 CE.TOT - Total of credit entries

BdEd L. Tl - Total of Uebat ernbries

% CHECKE1®- From Total Line 993

BdEd LB CHECKEIR] - Total Uebit and CLredit entries

B8 ETEXT - Set if error:s

LTS

== ‘Ihe header recerd corkains £ %0 block daka strings.
#% The header will be loaded inte the FT. IN.TAPE file ar TAPE.RAME. HDE

=% The record 15 contained 1n TAFL . WAPIE. WUEK .
*

ELOCK.GIZE = 100 Elock Jise that tape should be dooml caded

]
TLRH.LUL = ;% Manming Lre dit total
YOR.TOT = “* ;% Pamning Debit total
YCHE = "* :* Parming Che chomn total
YLNL = 7 % Mo ot record coudmt

FIT.FILE = "" F.FT.IN.TAFE =

*
*#% Estract tape manber , date and expiry date from header
=

HDE.ID = TAFE.HAME:" HIR"

Hhall wH. HEAl FEUR oL LN TAFE, HUE . LU ELGE
ETEXT = "MI3GIHNr HEADEE £ IN FT. IN.TAPE":FH:HIE.ID
HETUHN

ERD

TAFE.HO = ¥R HEAD[1.l0]

YOATE = ¥YR.HEED[1E2 5]

Il U CUBWERL . LATE

TAFE.TATE = YDARTE

TUATE = WH O HEAU | LEY o)

FO3UE CONVERT. DATE

TarFb BEXFLEY = wWUAlE
*
r Lorpwert the date: trom Julilam to BRSOt ormat
*

*
=% We mow hawe to proces: bhe whole tape tobtallang the amoeants ebc.
*

HEL . LU = TaAPh, BAME: " WUEK™

OPEMSEQ "FT.INW.TAPE". EEC.ID TO PIT .FILE ELZE

ELEXL = "CABNNUL UPEN £ LN FU. LN, TAFE” : FPFHEEC. LU
EETURH
ENL
*
Loop
HEAUBLK YHEEL FHUE PUT.EFLLE, BLUCK. §1&E ELGE YHED =
THTIL ¥EEC = "“
WLAB = YHEU|L,#] % FLT Uransaction code
IF YEEC[1,2?] HE "333" THER i* Mot a Total record

WAL = wRLLULEV L]
YAMT = OC OB (T2MT,"MDE ")
TLHR += WAL

END ELSE
YAMT = YREL[40,13]
WARL = UL LB AR, CELE T

Figure 38 - FT.IN.TAPE Directory showing details of Swiss PTT tape

Temenos T24 Media Application Program Interfaces.doc

¥CR.TOT += ¥AMT

EHD
TUNL += L
EEFERT

x
*% Beturn the infomation to the 1oad program
=

HO .EECS = ¥LHT

LHELCRGLE] = wLHK

CE.TOT = ¥CER.TOT

IE.TOT = YIR.TOT

LEEG . CHECKSE = CH.TUL + L. TUL
EETUER

IF YDATE[L1.{] LT 50 THEH YD&TE = "i0":YI&ATE ELIE YDATE = "13":YD&TE
Y¥RET.DATE = ""

LaLl JULUATE| YHEL . IALTE cL&Lh |

YDATE = YEET.DATE

EETUER
EMD

Figure 39 - FT.IN.-TAPE Directory showing details of Swiss PTT tape

UPDATE.ROUTINE

A subroutine must be defined to create FUNDS.TRANSFER records from the downloaded
tape. This will be executed from the FT.TAPES application.

Format: Subroutine Name

Subroutine name contains the name of the subroutine to be executed.
It must be defined on PGM.FILE as a type S program.

Invoked: From FT.TAPES$RUN when run with the UPDATE function

Arguments TAPE.SEQ.NR, TAPE.NAME
: Where TAPE.SEQ.NR is the sequence number allocated to the tape

) by T24.
TAPE.NAME is the name of the tape, the key to FT. TAPE.PARAMS.

Details:

The update routine must process the downloaded tape or file. Usually these processes will
create FUNDS.TRANSFER transactions for the movements.

The tape record must be read from FT.IN.-TAPE directory, using the TAPE.NAME.
TAPE.SEQ.NR as a key. Once processing is complete, the FT.TAPES application will
delete the downloaded file. For further details on the required processing see the Local
Clearing User Guide.

CREATE.CMD

A command and/or subroutine can be entered, which when executed creates a tape or file.
Typically this would be used to create a clearing tape or file.

Format: Command

Command contains the name of any jBase command or subroutine
name to be executed.

Temenos T24 Media Application Program Interfaces.doc

Invoked: From FT.TAPES$RUN when run with the “CREATE” function
Arguments None

Details:
Any executable command in jBase may be specified.

Example:

An example of a create command using cpio for production of a tape from the file
BACS.OUT.FILE.

TPDATE .ROJTINE. . ..

1. 1 CREATE.(MD.. =h -c "find FT_IN.TAPE/EACE._OUT.FILE -print
1. & CEEATE.MD.. -depth | cpie —owcdE /dewzms0"

CREATE _ROUTINME. . ..

=1Th Th in

Figure 40 - Example of Create command from BACS.OUT.FILE

CREATE.ROUTINE

A routine may be specified which is used to create or manipulate an extract file that can be
downloaded using the CREATE.COMMAND.

Format: Subroutine Name

Subroutine contains the name of the subroutine to be executed. It must
be defined on PGM.FILE as a type S program

Invoked: From FT.TAPES$RUN when run with the “CREATE” function

Arguments TAPE.SEQ.NR, TAPE.NAME.

: Where TAPE.SEQ.NR is the sequence number allocated by the
FT.TAPES application
TAPE.NAME is the key to the ET.TAPE.PARAMS record and identifies
the type of file being processed

Details:

The create routine will be used to create an output file for the clearing system/interface in
use. The file must be written to TAPE.NAME. TAPE.SEQ.NR within the directory
FT.IN.TAPE.

GENERATE.ROUTINE

A routine may be specified which is used to create an extract file that can be downloaded
using the CREATE.COMMAND.

Format: Subroutine Name

Subroutine contains the name of the subroutine to be executed. It must
be defined on PGM.FILE as a type S program

Invoked: From FT.TAPES$RUN when run with the “GENERATE” function

Arguments TAPE.SEQ.NR, TAPE.NAME, NO.RECS, CR.TOT, DR.TOT,
: CHECKSUM.

Temenos T24 Media Application Program Interfaces.doc

Where TAPE.SEQ.NR is the sequence number allocated by the
FT.TAPES application

TAPE.NAME is the key to the FT.TAPE.PARAMS record and identifies
the type of file being processed

NO.RECS returns the number of records contained in the extract file
CR.TOT returns the total of credit transactions

DR.TOT returns the total of debit transactions

CHECKSUM contains a calculated checksum.

Details:

The generate routine will create a file in the required format for the clearing
system/interface in use. The file must be written to TAPE.NAME. TAPE.SEQ.NR within the
directory FT.IN.TAPE.

The CR.TOT, DR.TOT, NO.RECS and CHECKSUM should be calculated and returned
where available.

ENQ.PURGE.ROUTINE

Local clearing interfaces may update a file, which is used to for reporting the contents of
the tape. A routine to purge the file on a regular basis may be specified here.

Format: Subroutine Name

Subroutine contains the name of the subroutine to be executed. It must
be defined on PGM.FILE as a type S program

Invoked: From FT.LOCAL.DATA.PURGE in the BATCH FT.START.OF.DAY

Arguments PARAM.ID, R.FT.TAPE.PARAMS.

: Where PARAM.ID is the key to the FT.TAPE.PARAMS record
R.FT.TAPE.PARAMS is the FT.TAPE.PARAMS record with the key
PARAM.ID.

Details:

The enquiry purge routine must determine whether the data is to be purged according to
the ENQUIRY .FILE .DAYS field in R.FT.TAPE.PARAMS.

Example:

Temenos T24 Media Application Program Interfaces.doc

SUEROUTINE FT .EAC3 TAPE _DATA PURGE(PARAM . ID . F.FT .TAPE.FPARZME)

*

* Routine to delete IT.EBAC3.TAPE.D&TA records=s which are older than
* the no of days specified on the IT_TAPE.PARM record

* for the tapa= parametari=msed.
*

INZERT I_COPMION
¥ INSERT I _EQUATE
¥ INEERT I_T.IT .TAFE_FARMZ
#IMSERT I_F.IT.EACE _TATE.DAT2
*
* Open Files=
*
F.FT .EACS _TAPE.DATZ = '!
FILE.TT.EACE.TAPE.DATA = 'F.IT.EAC3.TAPE.DATA'
CALL OPF(FILE.FT.BACS.TAPE .DATA,T.IT .EACE . TAFPE.DATA)

CUTOFF.DATE = ICOMJ(TODAY, 'D') - B_FT.TAPE.PARMMS<FT.TP.ENQUIEY FILE DAYE>
CFTOFF.DATE = OCOMJ(CUTOEF.DATE, 'IVE ')
CUTOFF.DATE = CUTOFF.DATE[7,4]: CUTOFF.DATE[4, 2]: CUTOFF.DATE[1, £]
*
STATEMENT = "SELECT ":FILE.FT_FACS.TAPE DATA:" WITH ID LIKE '":PARAM.ID:"__.' AWD
WITH GLOETS.ZYSTEM.DATE LT ": CUTOFF.DATE

CET 3TATEMENT
EXECUTE 3TATEMENT
IF EFSELECTED THENW
DATa "g"
EXECITE '"DELETE ":FILE.FT.E&C3 .TAFPE.DATA

FETUEN

Figure 41 - Enquiry purge routine R.FT.TAPE.PARAMS

AC.ENTRY.PARAM

The AC.ENTRY.PARAM application controls the Generic Accounting Interface. It contains
booking details of entries supplied in an external ASCII file, and the layout of the file. The
standard routine AC.INWARD.FILE should be used as the UPDATE routine in ET.TAPES to
run the generic interface.

Additional validation is possible by calling user routines.

DATA.VAL.RTN
A subroutine may be specified to validate / convert data extracted from the Ascii file. It may

be either a standard IN2 routine, or a user defined routine.
Format: Subroutine name

Subroutine name contains the name of the user-defined subroutine to
be invoked. The routine must exist in the VOC file.

Invoked: From AC.INWARD.FILE
Arguments None

Details:

The value extracted from the tape is supplied in the variable COMI and may be modified if
required. An error in the format of the value extracted should be returned in the variable
ETEXT.

Temenos T24 Media Application Program Interfaces.doc

VALIDATION.RTN
A subroutine may be specified to validate the contents of the final extracted entry record,

in order to either reject the entry, or suspense the account number
Format: Subroutine name

Subroutine name contains the name of the user-defined subroutine to
be invoked. The routine must exist in the VOC file.

Invoked: From AC.INWARD.FILE
Arguments IN.ENTRY - (In) The formatted accounting entry
: REP.ENTRY - (In/Out) The reporting entry from the

AC.INWARD.ENTRY record which has been constructed

RTN.ERR - (Out) Should return any error message found causing the
entry NOT to be processed

RTN.OVE - (Out) Should return any message which causes the
account to replaced with a suspense account.

Details:

This routine should be used where the entry requires specific validation based on the
contents of the record. Using the ENQ.FILE.LOC field in the application, extracted data can
be mapped to any field in AC.INWARD.ENTRY, which can then be checked in the routine
written here. For example a SORT.CODE extracted could be mapped to LOCAL.REF
value 2, which can then be validated in a user routine specified at this point.

Local Statutory Reporting

Introduction

T24 allows subroutines to be called at input time for the applications FUNDS.TRANSFER.
DATA.CAPTURE, TELLER and DRAWINGS, which can validate and default local
reference values used in local reporting. Typically an activity code will be allocated
according to the type of contract entered.

BANK.RETURN.PARAMS

This application allows definition of subroutines to be called from the above mentioned
applications at input time to allow defaulting and validation of local reference items. The
record applicable to the company is defined in LOCAL .PROCESS in the COMPANY record.

INIT.ROUTINE

A routine may be called to initialise local variable required for the processing for the
associated APPLICATION.

Format: Subroutine Name
Subroutine contains the name of the subroutine to be executed. It must

Temenos T24 Media Application Program Interfaces.doc

be defined on PGM.FILE as a type S program
Invoked: From EUNDS.TRANSFER in the initialisation section

From TELLER in the INITIALISE section

From DATA.CAPTURE in the initialisation

From DRAWINGS in the INITIALISE section

Arguments None

Details:

This routine should be used to initialise variables specific to the application when the
application is first used.

The application in question can be determined from the common variable APPLICATION.

CHECK.INPUT.ROUTINE

A routine can be called at input time to validate and default local reference items for the
associated APPLICATION.

Format: Subroutine Name

Subroutine contains the name of the subroutine to be executed. It must
be defined on PGM.FILE as a type S program

Invoked: From FUNDS.TRANSFER prior to the call to
FT.COMPLETE.XVALIDATION

From TELLER in the section CROSSVALIDATION
From DATA.CAPTURE at cross-validation
From DRAWINGS in the section CROSSVALIDATION

Arguments None
Details:

The routine may use any of the system common variables available. The current contract
record is held in R.NEW. The BANK.RETURN.PARAMS record is held in common in the variable
R.BANK.RETURN.PARAMS

The fields LOCAL.REF.DESC and LOCAL.REF.POSN may be defined for each application, and
allow the correct value within the LOCAL .REF field to be identified for validation purposes.

Takeover / Installation Customisation

Introduction

In order to assist the take-over of existing systems when installing T24, the system allows
linkage of subroutines. Subroutines will usually be required to perform processing which
allows existing file structures to be mapped into the appropriate T24 data files.

Temenos T24 Media Application Program Interfaces.doc

ALT.ACCT.PARAMETER

The application ALT.ACCT.PARAMETER allows definition of the details of the account
number structure in the existing system. The old account number is stored in a cross-
reference table linking it to the new T24 account number, called ALTERNATE.ACCOUNT.

CHECKDIGIT.TYPE

The existing account number check-digit options for a T24 account are supported, but
where these do not match, a subroutine may be used to perform the validation and
formatting of the alternate account number.

Format: @Subroutine Name

Subroutine contains the name of the subroutine to be executed. It must
be defined on PGM.FILE as a type S program

Invoked: From ACCOUNT at field validation time for ALT.ACCT.ID
Arguments None.

Details:

This routine should validate and format the account number; the basic type validation (i.e.
alpha, numeric) will have already been performed before the routine is called. Any account
mask specified with the routine will not be validated, and should be performed in the
subroutine.

The alternate number entered is contained in COMI, and should be returned in this
variable. Any error message should be returned in ETEXT.

Example:

SUEROUTINE 2N¥. ACCT
#INZERT I COMMON
¥ INSERT I_EQUATE
*

* Thi=s routine will check that the accournt nurber matches
* the format A393993324
* The account number may be entered as "Zaln-inla" and

* will be correctly formatted
*

IN_ACCT = COMI ; ¥ Incoming account no
EEGIN CASE
CASE NOT(IN.ACCT MATCHEES "ZALWONLA")
ETEXT = "FPORMAT MUST EE '&AF9233a'"
CASE IN.ACCT MATCHES "ZASH1a" ;F Ohkay
CASE 1 ; ¥ Format mamber
IH.ACCT = IM.ACCT[L1,Z2]:TMT(IN.ACCT[2,LEN(IN.ACCT)-2],"5'0'R"): IN.ACCT[1]
END CAZE
IF WOT (ETEXT) THEW COMI = IN.ACCT
*
EETURN
END

Figure 42 - Example subroutine ANY.ACCT

Temenos T24 Media Application Program Interfaces.doc

EBS.AUTO.FUNCTION

The system allows a subroutine to be inserted when building the input buffer when
contents need to be calculated, and when maintaining totals for the records processed.

INPUT.BUFFER and KEYSTROKES
A routine can be called to build the input buffer required for the automatic key input.

Format: @Subroutine Name
Subroutine contains the name of the subroutine to be executed.
Invoked: From EBS.AUTO.FUNCTION

Arguments LAST.ID, INPUT$BUFFER
: Where LAST.ID contains the id of record being processed
INPUT$BUFFER contains the current input buffer.

Details:
Additional input should be added to INPUT$BUFFER, separated by spaces.

Example:

The following subroutine will cycle the interest review frequency on mortgage records to
the next date.

SUEROUT INE E.M&. INT .REV. FREQ(L&ST . ID ,WAER)
*

*

¥ INSERT I_COMMION

¥ INSERT I_EQUATE

¥ INSERT I_F.MG.MOFT&AGE
*

*
*
F .Mz MIBTFAE = '!
CALL OFF('F.Mz.MOFTGAGE',F. MG MORT FAGE)
B_MF = ''. ETEXT = ''
CALL F.READ('F.MGE_MORTFAFE', LAST.ID E. MG F.MGE_MORT Z3>E ,ETEXT)
FIELD1 = R_MME. INT _REVIEW. FREQ>[1. 8]

COMI = R_M&EMGE. INT.REVIET). FREQ -
CALL CFQ
FIELDZ = COMI

VAR, = FIELD1:C_F:FIELDZ
EETURN

ERD

Figure 43 - Example subroutine E.MG.INT.REV.FREQ

TOTAL.FIELD

A subroutine can be used to maintain totals used for confirmation that the selection is
correct.

Format: @Subroutine Name

Subroutine contains the name of the subroutine to be executed. Must
be defined on PGM.FILE as TYPE S.

Temenos T24 Media Application Program Interfaces.doc

Invoked: From EBS.AUTO.FUNCTION

Arguments REC.ID, RESULT
: Where REC.ID contains the id of record being processed
RESULT contains the value to be added to the running total.

Details:

The calculated/derived amount should be returned in RESULT. For example a routine may
be written to convert foreign amounts to local and return a local total.

TAKEOVER.MAPPING

Subroutines may be defined in TAKEOVER.MAPPING to format data into the expected
T24 format from the source files, and to manipulate data according to specific rules. For
example a cross-reference table may need to be maintained in order to build the correct
link between T24 records.

DATA.SUBROUTINE

A subroutine may be called when data has been extracted from the source file. This is
called prior to the update of the T24 file.

Format: Subroutine Name

Subroutine contains the name of the subroutine to be executed. Must
be defined on PGM.FILE as TYPE S.

Invoked: From TAKEOVER.MAPPING$RUN after allocation of id and
performing mapping into the T24 record as specified. This routine will
be called when the TAKEOVER.MAPPING is run in report and update
modes

Arguments None

Details:

The current record id is contained in ID.NEW and will be used to write the record. The id
may be manipulated at this point. R.NEW will contain the contents of the file mapped
according to the definitions in TAKEOVER.MAPPING. If data is to be manipulated, it
should be mapped into a field in the record, and the subroutine should perform the
necessary changes.

UPDATE.SUBROUTINE

A subroutine may be invoked after extraction of data, just before the write to the
unauthorised file is executed.

Format: Subroutine Name

Subroutine contains the name of the subroutine to be executed. Must
be defined on PGM.FILE as TYPE S.

Invoked: From TAKEOVER.MAPPING$RUN after mapping of data as specified
and possible manipulation by the DATA.SUBROUTINE. Called only in

Temenos T24 Media

UPDATE mode.

Arguments None.

Details:

The current record id is contained in ID.NEW and will be used to write the record. The id
may be manipulated at this point. R.NEW will contain the contents of the file mapped
according to the definitions in TAKEOVER.MAPPING. A routine called at this point may be

used to update cross-reference files used for take-over purposes.

Example:

The following example has been used to update DE.ADDRESS for SWIFT addresses. The
incoming key is a Customer number, which must be converted to a valid DE.ADDRESS

key.

+

SUEROIT INE DATA.MAFP _DEAD]L

DE. ADDRE3S I3 3WIFT.1

$INSERT I F.SECURITY.MASTEER
F#INSERT I COMMON

7 INSERT I_EQUTATE

$INSERT I_F.CUSTOMER

+*

*

IF LEN(FUHCTION) > 1 THEN EETUERN

F_REZD.REC = ""
ER = nn
TEST .&DD.IND = ID.WEW[LEW(ID.WEW)-1,LEN(ID.HEW])] + 0
IF TEST .ADD.IND > 1 THEN ;* Test records hawe suffix of 1 OFR £
ETEXT = 0:UM:ID_NEW:HM: "IGNORED FOR THIZ RUN"
ID.¥EW = '!
RETUERN
END
FILE WAME = 'F.(CJ3TOMER'
F_CUST . APPLICATION = '!
CALL OPF (FILE.W2ME, F.CUST.APPLICATION)
ID.NEW = ID.HEW[1,LEN(ID.HEW]-Z]
CALL F.READ(FILE.NAME,ID_WEW,F._EFEXD _FEC,F.CUST. 2FFL ICAT ION, ER)
IF EE. THEN ;* Mi==ing Customer
ETEXT = 0:UM:ID_NETW:M: "CUSTOMER LOAD HAS FAILED" ID.WEW = '!
END ELEE
SHJE.CUST .CODE = ID.NEW
ID.NEW = ID.COMPANY: '_C-':3&UVE.CUST.CODE: '.SWIFT.1'
END

EETUEN
END

Limits

Figure 44 - Example update subroutine DATA.MAP

Introduction

In order to allow complex calculations of risk factors to be applied to limit products or sub-
products, the LIMIT.REFERENCE application allows definition of a subroutine, which may
be invoked. The subroutine will return the amount of a given transaction to be recorded in

the limits system.

Application Program Interfaces.doc

Temenos T24 Media Application Program Interfaces.doc

LIMIT.REFERENCE

Format: Subroutine Name

Subroutine contains the name of the subroutine to be executed. Must
exist as a VOC entry.

Invoked: From LIMIT.CHECK at input (validation).

Arguments TRANSACTION.ARGUMENTS

: Where TRANSACTION.ARGUMENTS contains a dynamic array of
details. The layout of this array is contained in the insert
| LIMIT.SROUTINE.
TRANSACTION.ARGUMENTS should be returned with the derived
limit amount.

Details:
The following details are contained in TRANSACTION.ARGUMENTS.

<1> LIAB.ORIG The liability number (element 1 of the Limit key).
This is a T24 Customer number. Always present.

<2> CUST.NO The customer within the liability group (element 4
of the limit key). Always present.

<3> REF.NO The limit reference number formatted with leading
zeroes. Element 2 of the limit key. Always present.

<4> SER.NO The limit serial number formatted with leading
zeroes. Element 2 of the limit key. Always present.

<5> TXN.REF The T24 transaction id being processed. Always
present.

<6> COMPANY.MNE The mnemonic of the company the transaction is

entered in. Note that the transaction company may
be different to the company in which limits are
held. Always present.

<7> COMPANY.ID The company code of the transaction. See above.
Always present.

<8> TXN.PERIOD The processing date used to determine time to
maturity. This is TODAY when the system is online
or processing application Close of Business, and
PERIOD.END when running the percentage
revaluation process during Close of Business.
Always present.

<9> TXN.DATE The maturity date for the transaction to be
recorded in the limits system. This may be a date,
or a number of days notice. Always present.

<10> TXN.CCY The transaction currency to be recorded in the
limits system. Always present.
<11> TXN.AMT The full amount of the transaction as handed to

the limits system. Note that for FX transactions,

Temenos T24 Media Application Program Interfaces.doc

this contains two values: value 1 is the BUY
amount, value 2 is the SELL amount. Always
present. Note also that the sign of the amounts
passed should not be changed.

<12> OTH.CCY.OR.COMMITM Contains the following:
For FX contracts, the SELL currency
For LD commitment contracts, “Y” to indicate a

commitment
The value “NR” if the On-line limit amount is not to
be reduced.

<13> DEAL.DESK The dealer desk of the deal. Not used.

<14> ACC.CO The company of the account when an account

limit is processed. Note that percentage
processing is ignored for accounts.

<15> ACC.NO The account number for an account limit. See
ACC.CO.

<16> ACC.BAL The account balance to be considered. See
ACC.CO

<17> ACC.CCY The account currency of the associated ACC.BAL.

<18> CURR.NO The current number of overrides in the T24
transaction.

<19> FIND.REC Not relevant to percentage processing.

<20> CALL.TIME Indicator for error/override processing. Can be:

Null - On-line overrides require response

‘U’ - Batch update, always update regardless of
error

‘E’ - Batch, return if error
‘V’ - On-line verify no transaction details, i.e. called

from LIMIT
‘B’ - Batch verify no transaction details, i.e. called
from LIMIT.

<21> CALL.ID Indicates whether LIMIT.CHECK has been called

in “VAL”, validation mode, or “DEL”, deletion
mode. Note that the subroutine will only be
invoked in “VAL” mode.

Access to Transaction Record

Processing to calculate the correct limit amount may require analysis of the transaction
record. This can be extracted as follows:

ONLINE

The contract is contained in the common element R.NEW. The last authorised version is in
R.OLD, the last unauthorised version is R.NEW.LAST.

Temenos T24 Media Application Program Interfaces.doc

END.OF.DAY

The contract should be read from the underlying application file. The application should be
determined from the TXN.REF and the transaction file opened. When opening the file, the
company mnemonic should be specified in the call to OPF to ensure the correct file is
used.

Returning Information
The TRANSACTION.ARGUMENTS should contain the following.

<1> Amount1l The amount derived to be used in updating limits. This must be
the in the currency passed in TXN.CCY, and must be returned with
the same sign as the passed TXN.AMT

<2> Amount 2 For FX deals only this should contain the equivalent percentage
amount of the other side of the deal, in the currency passed in
OTH.CCY.OR.COMMITM.

ETEXT should be returned if an error is encountered.

An example routine follows:

nuunL
anng ;
ann::
anng:
anns :
O00E :
ana?:
anng :
aned:
nuLn
ol
0nle:
oLz :
0nlg:
[INE
O0LlE :
Ly :
anls :
nuLy
angn;
gl :
angi:
g2 :
angd:
anEs:
O0EE :
angEe:
WuEs
anga;
anEn:
anzl:
oz
anzz:
anid:
anzs:
A02E :
nuEy
nnza;
andn
gl :
ndi :
gz :
ndd:
ands :
00de :
nugy
nnds ;
nnda:
ansn:
ansl:
a5 :
ans2:
ansd:
055 :
LRIL]
nnsE?
005§ :
ansa:
O0ED :
O0EL:
A0nEE :
AnE2:
00nEd:
WUES
O0EE :
Qe :
0BG :
0nEd :

GUBHUUTLINE LIFLT, ALLUL, FEHED, LN L LIFLL . & ErUPEN LS |
*
$IRIERT I_COMMON
$IRIERT I_EQUATE
$IRIERT I_LIMIT.3IROUTINE
$IRIERT I_T.LD. LOANS .AND.DEPOSITS
$IRIERT I_T. (UG TOMER
$IRIERT I_T.LIMIT. REFERENCE
*
=% Thir 15 an example subrowtine o demonstrate the abllity to retum
#% an ameowrts for an LD deal for ure in the limits strocture.
#% Adrgumerts are passed in LIMIT .ARMENTI, a dmamic array defined in
#% I LIMIT.3ROUTINE
** The omly arguernt returned ix the amowmt. Wote for FOREX contracts
% § amourts separated by M will be required for both rides of the deal
**% Errors are returned in ETEXT

*% The rowuwtine will

=% Look at the LU record. The customer will be checked to ewbract the

**%* rector code, which will in turn be checked against the LOCAL . EEFEERNMCE
#* field LIMIT. 3ECTOE in LIMIT.REEFEEEMCE. If fomnd the associated LIMIT
4% PERLC will be ured, if mot 100% ix assuned.

** The rector will also be checked against the LOCAL .EEFEREMCE item

** ELOCKED.3ECTOR in the LD combract. If it matches an error is returned
**% [Hote this would probably be better ar a2 Wersion Walidation routine in
** practice)

EETUERED. 3M0UHT = “" ; * Initialise
#% [heck first that the update applies to the LD application
IF LIMIT. ARG1MENTS<LI.3VUER.TXH.REF:+[1,8] = "LD" THEM

#*% Open files mtc
*##%# Argqument TXH.EEF.MME cortains the deal nunber | company code
=% Upen the LU file in the correct compd
C0.CODE = LIMIT.ARUGUMENTI-LI. SUER. COMPANRT . MHE:-
CORTRACT. ID = LIMIT. ARGIMENTE<LI.EVUEE.TXH.REF-
LIMIT.EEF.ID = LIMIT.ARMMENT3<LI. SUER.EEF. B0 + 0 : * Gtrip leading seros

P LIGTMEE = "
CALL OFF("F.CUSTOMER", F.CUITOMER)

LD.FILE = "F":CO0.CODE: " .LD.LOANS . AND. DEPOSITS"
f L Y
CALL QOFF(LD.FILE, F.LD.FILE)]

P LIMIT.EEFEEEMLE = ""
CALL OFF("F.LIMIT .EEFERENMCE", F .LIMIT .EETEREMCE])

**% FEwbract customer mammber, read record to get sector

CIETMER. RO = LIMIT. ARGFIMENTI<LI.3VUER.CU3T. HO-

LUEl . HEE = 7

CALL F.EEAD ("F.CUSTOMER", CUSTOMER WO, [UST .EEC, F.CUSTIMER, ")
SECTOR.CODE = CUET.REC<EE.CUS .3ECTOR:-

*% et the LD record
** Jf mmning on-line it will be in BE.MEW in commaon. In end of day
**% the record rhould be read from the file

IF EURHINL. UHDEE.EATCH THEH

LU B = e

CALL F.READ (LD .FILE, COMIRACT.ID, LD.EEC, I'.LD.FILE, ""]
END ELIE

MATEUILD LD .EEC FEOM E. HEW
EMD

Figure 45 - Example routine for LIMIT REFERENCE

Temenos T24 Media Application Program Interfaces.doc

angn;

007Ll: *#* Check that the JECTOE i: not blocked in the LD record

angi:

anga: LOCATE 3ECTOE.CODE IK LD.REC<LD.LOCAL .FEF.1l.1:- IETTINML ELOCKED.FPO0S THEM
anTd: ETEXT = "CUSTOMEE 3ECTOR [ODE I3 ELOCKED"

an7s: EMD EL:E

anvE: *

0077 : #% How check the sector against the limit ref record

wuyE =

anTa; LIMIT.EEFT.EEC = "

anEn: [ALL F.READ("F.LIMIT.REFEEENCE", LIMIT .EEF.ID, LIMIT.EEF.REC.
I LIMIT.EEFERENCE . ")

anEl: =

anEd: LOCATE SECTOR.CODE IM LIMIT.REF.REC<LI .FEF .LOCAL.EEF,1,.1l- 3ETTINE
SECTOR.PO3 THEH

ang2: SELTOR.PERC = LIMIT.EEFT.EEC<LI .EEF. LOCAL.EET &, SECTOR.PO3:-
anEd: EHD ELZE

LLE 21 S ECTUE PEHEE = L0y ;% detanlt

N0 EHD

anEy:

00&§§: %% Calculate amowunt percentage

anEg: =

andan: TXH.2MT = LIMIT.ARFMENTI-LI. SUEER . TXH. 2MT-

andl: TXRH.CCY = LIMIT.ARFPMERTI-LI. SUER . TXH. [C%¥-

andi: EETUEHMED . AMOUNRT = TXH.AMT * IECTOR.FERC f 100

andz: CALL EE. ROUHD .AMOUNT(TXH.CCY, EETURKED .AMOUWT, “",. "") : * Beund to
CUITEnCcY

anag; =

onas: EHD

Onag: =

anan: EHD

anag: =

andaa: LIMIT. ARCUMENT S = RETURMED. 2MOUNT

alon: *

0lol: P EXIT:

LERIF EETUEN

alnz; =

0104: EXD

Figure 46 - Example routine for LIMIT REFERENCE

Company Customisation

Introduction

In order to allow for different account number structures and check-digit calculations, the
check-digit type may be defined as a user routine, which will perform the desired
formatting and check-digit validation. This routine should also return the next available id if
called from the ACCOUNT application with F3 or F2 entered at awaiting id. The routine is
specified in the COMPANY record.

Company

ACCT.CHECKDIG.TYPE

Format: @Subroutine Name

Subroutine contains the name of the subroutine to be executed. Must
exist as a VOC entry.

Invoked: From | _CHECK.ACCT.NO and GET.NEXT.ID.

Arguments None
: The following common variables should be used in the subroutine.

) COMI - contains the account number, or portion of the account number
to be validated. When called from GET.NEXT.ID the following

Temenos T24 Media Application Program Interfaces.doc

additional elements are supplied:

COMI<1> - Next account number from locking
COMI<2> - “NEW” to denote new number required
COMI<3> - “F" is F3 requested, “B” if F2 requested

ETEXT - returned if there is an error in the account number supplied.

Details:

The following example formats an account number to the number of digits in the
ACCOUNT.MASK in the company record. There is no check-digit required.

anoL: JUERMITINE TEST.ACCOUNT . CHECK

anog:

apo2: $THIERT I_COMMON

anod: $THIERT I_EQUATE

anos: $IHIERT I_T. COMPENY

anog: *

0007 *#* Tert roucine to allow an accowts of any checkdigit formatted to the
000 : ** arcount mask length

LLATRIE

anln: IN. ACLC RO = COMI<1:- ;% Jupplied &fc Ho

Onll: MEW .IKRD = COMI<ix- ;% Will be ret if mext id 0oli:
EACK FOEW = COMI<2: ;% et £o P if F? or B id FE

a0l:: COMI = COMI<1:- ; % Btrip of other items
anlg: *

anls: MASKLEN = COUMT(E.COMPANY(EE. COM . ACCOUNT . MAZK) "g") : * Length
OolE: *

anly : IF HED.IND THER i * et mext account nuanber
LLLTH R 1" BalK. UKW = "B THEN

angEn: END ELE

onEl: IN. ALL KO -= 1

g : EMD

angs: EHD

angd: *

00E5: *#% FPormat the accowunt mumber to the mamber in the mask

OnEe: *

angEe : IF LER(COMI) LT MA&IKLEM THEHW

uuEE EIEXD = "allCuunl NEEBERE LUl LUBLE™

anga: END ELIE

anzn: COMI = 3TE('0' MAIKLENM-LEM(IN.ACC . HO1):IH. ACC. HO

an2l: EMD

anzi: #

anz2: EETUER

anzd: EHD

Figure 47 - Example subroutine TEST.ACCOUNT.CHECK

